927 research outputs found

    GA-based neural fuzzy control of flexible-link manipulators

    Get PDF
    The limitations of conventional model-based control mechanisms for flexible manipulator systems have stimulated the development of intelligent control mechanisms incorporating fuzzy logic and neural networks. Problems have been encountered in applying the traditional PD-, PI-, and PID-type fuzzy controllers to flexible-link manipulators. A PD-PI-type fuzzy controller has been developed where the membership functions are adjusted by tuning the scaling factors using a neural network. Such a network needs a sufficient number of neurons in the hidden layer to approximate the nonlinearity of the system. A simple realisable network is desirable and hence a single neuron network with a nonlinear activation function is used. It has been demonstrated that the sigmoidal function and its shape can represent the nonlinearity of the system. A genetic algorithm is used to learn the weights, biases and shape of the sigmoidal function of the neural network

    On the Efficiency of the Neuro-Fuzzy Classifier for User Knowledge Modeling Systems

    Full text link
    User knowledge modeling systems are used as the most effective technology for grabbing new user's attention. Moreover, the quality of service (QOS) is increased by these intelligent services. This paper proposes two user knowledge classifiers based on artificial neural networks used as one of the influential parts of knowledge modeling systems. We employed multi-layer perceptron (MLP) and adaptive neural fuzzy inference system (ANFIS) as the classifiers. Moreover, we used real data contains the user's degree of study time, repetition number, their performance in exam, as well as the learning percentage, as our classifier's inputs. Compared with well-known methods like KNN and Bayesian classifiers used in other research with the same data sets, our experiments present better performance. Although, the number of samples in the train set is not large enough, the performance of the neuro-fuzzy classifier in the test set is 98.6% which is the best result in comparison with others. However, the comparison of MLP toward the ANFIS results presents performance reduction, although the MLP performance is more efficient than other methods like Bayesian and KNN. As our goal is evaluating and reporting the efficiency of a neuro-fuzzy classifier for user knowledge modeling systems, we utilized many different evaluation metrics such as Receiver Operating Characteristic and the Area Under its Curve, Total Accuracy, and Kappa statistics

    Tone classification of syllable -segmented Thai speech based on multilayer perceptron

    Get PDF
    Thai is a monosyllabic and tonal language. Thai makes use of tone to convey lexical information about the meaning of a syllable. Thai has five distinctive tones and each tone is well represented by a single F0 contour pattern. In general, a Thai syllable with a different tone has a different lexical meaning. Thus, to completely recognize a spoken Thai syllable, a speech recognition system has not only to recognize a base syllable but also to correctly identify a tone. Hence, tone classification of Thai speech is an essential part of a Thai speech recognition system.;In this study, a tone classification of syllable-segmented Thai speech which incorporates the effects of tonal coarticulation, stress and intonation was developed. Automatic syllable segmentation, which performs the segmentation on the training and test utterances into syllable units, was also developed. The acoustical features including fundamental frequency (F0), duration, and energy extracted from the processing syllable and neighboring syllables were used as the main discriminating features. A multilayer perceptron (MLP) trained by backpropagation method was employed to classify these features. The proposed system was evaluated on 920 test utterances spoken by five male and three female Thai speakers who also uttered the training speech. The proposed system achieved an average accuracy rate of 91.36%

    Modeling Financial Time Series with Artificial Neural Networks

    Full text link
    Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001
    • …
    corecore