1,489 research outputs found

    Evolution of Ego-networks in Social Media with Link Recommendations

    Full text link
    Ego-networks are fundamental structures in social graphs, yet the process of their evolution is still widely unexplored. In an online context, a key question is how link recommender systems may skew the growth of these networks, possibly restraining diversity. To shed light on this matter, we analyze the complete temporal evolution of 170M ego-networks extracted from Flickr and Tumblr, comparing links that are created spontaneously with those that have been algorithmically recommended. We find that the evolution of ego-networks is bursty, community-driven, and characterized by subsequent phases of explosive diameter increase, slight shrinking, and stabilization. Recommendations favor popular and well-connected nodes, limiting the diameter expansion. With a matching experiment aimed at detecting causal relationships from observational data, we find that the bias introduced by the recommendations fosters global diversity in the process of neighbor selection. Last, with two link prediction experiments, we show how insights from our analysis can be used to improve the effectiveness of social recommender systems.Comment: Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM 2017), Cambridge, UK. 10 pages, 16 figures, 1 tabl

    A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs

    Full text link
    Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving networks spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with prominent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphs in a continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a "Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named "Relative Selectivity" that is used to select between different query processing strategies. Our experiments performed on real online news, network traffic stream and a synthetic social network benchmark demonstrate 10-100x speedups over selectivity agnostic approaches.Comment: in 18th International Conference on Extending Database Technology (EDBT) (2015

    Exploring the Range of Possible Outcomes by means of Logical Scenario Analysis and Reduction for Testing Automated Driving Systems

    Full text link
    With the implementation of the new EU regulation 2022/1426 regarding the type-approval of the automated driving system (ADS) of fully automated vehicles, scenario-based testing has gained significant importance in evaluating the performance and safety of advanced driver assistance systems and automated driving systems. However, the exploration and generation of concrete scenarios from a single logical scenario can often lead to a number of similar or redundant scenarios, which may not contribute to the testing goals. This paper focuses on the the goal to reduce the scenario set by clustering concrete scenarios from a single logical scenario. By employing clustering techniques, redundant and uninteresting scenarios can be identified and eliminated, resulting in a representative scenario set. This reduction allows for a more focused and efficient testing process, enabling the allocation of resources to the most relevant and critical scenarios. Furthermore, the identified clusters can provide valuable insights into the scenario space, revealing patterns and potential problems with the system's behavior.Comment: submitted to IEEE ITSC 202

    Quantification of De-anonymization Risks in Social Networks

    Full text link
    The risks of publishing privacy-sensitive data have received considerable attention recently. Several de-anonymization attacks have been proposed to re-identify individuals even if data anonymization techniques were applied. However, there is no theoretical quantification for relating the data utility that is preserved by the anonymization techniques and the data vulnerability against de-anonymization attacks. In this paper, we theoretically analyze the de-anonymization attacks and provide conditions on the utility of the anonymized data (denoted by anonymized utility) to achieve successful de-anonymization. To the best of our knowledge, this is the first work on quantifying the relationships between anonymized utility and de-anonymization capability. Unlike previous work, our quantification analysis requires no assumptions about the graph model, thus providing a general theoretical guide for developing practical de-anonymization/anonymization techniques. Furthermore, we evaluate state-of-the-art de-anonymization attacks on a real-world Facebook dataset to show the limitations of previous work. By comparing these experimental results and the theoretically achievable de-anonymization capability derived in our analysis, we further demonstrate the ineffectiveness of previous de-anonymization attacks and the potential of more powerful de-anonymization attacks in the future.Comment: Published in International Conference on Information Systems Security and Privacy, 201

    Video Recommendation Using Social Network Analysis and User Viewing Patterns

    Full text link
    With the meteoric rise of video-on-demand (VOD) platforms, users face the challenge of sifting through an expansive sea of content to uncover shows that closely match their preferences. To address this information overload dilemma, VOD services have increasingly incorporated recommender systems powered by algorithms that analyze user behavior and suggest personalized content. However, a majority of existing recommender systems depend on explicit user feedback in the form of ratings and reviews, which can be difficult and time-consuming to collect at scale. This presents a key research gap, as leveraging users' implicit feedback patterns could provide an alternative avenue for building effective video recommendation models, circumventing the need for explicit ratings. However, prior literature lacks sufficient exploration into implicit feedback-based recommender systems, especially in the context of modeling video viewing behavior. Therefore, this paper aims to bridge this research gap by proposing a novel video recommendation technique that relies solely on users' implicit feedback in the form of their content viewing percentages

    Protecting attributes and contents in online social networks

    Get PDF
    With the extreme popularity of online social networks, security and privacy issues become critical. In particular, it is important to protect user privacy without preventing them from normal socialization. User privacy in the context of data publishing and structural re-identification attacks has been well studied. However, protection of attributes and data content was mostly neglected in the research community. While social network data is rarely published, billions of messages are shared in various social networks on a daily basis. Therefore, it is more important to protect attributes and textual content in social networks. We first study the vulnerabilities of user attributes and contents, in particular, the identifiability of the users when the adversary learns a small piece of information about the target. We have presented two attribute-reidentification attacks that exploit information retrieval and web search techniques. We have shown that large portions of users with online presence are very identifiable, even with a small piece of seed information, and the seed information could be inaccurate. To protect user attributes and content, we adopt the social circle model derived from the concepts of "privacy as user perception" and "information boundary". Users will have different social circles, and share different information in different circles. We introduce a social circle discovery approach using multi-view clustering. We present our observations on the key features of social circles, including friendship links, content similarity and social interactions. We treat each feature as one view, and propose a one-side co-trained spectral clustering technique, which is tailored for the sparse nature of our data. We also propose two evaluation measurements. One is based on the quantitative measure of similarity ratio, while the other employs human evaluators to examine pairs of users, who are selected by the max-risk active evaluation approach. We evaluate our approach on ego networks of twitter users, and present our clustering results. We also compare our proposed clustering technique with single-view clustering and original co-trained spectral clustering techniques. Our results show that multi-view clustering is more accurate for social circle detection; and our proposed approach gains significantly higher similarity ratio than the original multi-view clustering approach. In addition, we build a proof-of-concept implementation of automatic circle detection and recommendation methods. For a user, the system will return its circle detection result from our proposed multi-view clustering technique, and the key words for each circle are also presented. Users can also enter a message they want to post, and the system will suggest which circle to disseminate the message
    • …
    corecore