21 research outputs found

    The use of modern tools for modelling and simulation of UAV with Haptic

    Get PDF
    Unmanned Aerial Vehicle (UAV) is a research field in robotics which is in high demand in recent years, although there still exist many unanswered questions. In contrast, to the human operated aerial vehicles, it is still far less used to the fact that people are dubious about flying in or flying an unmanned vehicle. It is all about giving the control right to the computer (which is the Artificial Intelligence) for making decisions based on the situation like human do but this has not been easy to make people understand that it’s safe and to continue the enhancement on it. These days there are many types of UAVs available in the market for consumer use, for applications like photography to play games, to map routes, to monitor buildings, for security purposes and much more. Plus, these UAVs are also being widely used by the military for surveillance and for security reasons. One of the most commonly used consumer product is a quadcopter or quadrotor. The research carried out used modern tools (i.e., SolidWorks, Java Net Beans and MATLAB/Simulink) to model controls system for Quadcopter UAV with haptic control system to control the quadcopter in a virtual simulation environment and in real time environment. A mathematical model for the controlling the quadcopter in simulations and real time environments were introduced. Where, the design methodology for the quadcopter was defined. This methodology was then enhanced to develop a virtual simulation and real time environments for simulations and experiments. Furthermore, the haptic control was then implemented with designed control system to control the quadcopter in virtual simulation and real time experiments. By using the mathematical model of quadcopter, PID & PD control techniques were used to model the control setup for the quadcopter altitude and motion controls as work progressed. Firstly, the dynamic model is developed using a simple set of equations which evolves further by using complex control & mathematical model with precise function of actuators and aerodynamic coefficients Figure5-7. The presented results are satisfying and shows that flight experiments and simulations of the quadcopter control using haptics is a novel area of research which helps perform operations more successfully and give more control to the operator when operating in difficult environments. By using haptic accidents can be minimised and the functional performance of the operator and the UAV will be significantly enhanced. This concept and area of research of haptic control can be further developed accordingly to the needs of specific applications

    The use of modern tools for modelling and simulation of UAV with Haptic

    Get PDF
    Unmanned Aerial Vehicle (UAV) is a research field in robotics which is in high demand in recent years, although there still exist many unanswered questions. In contrast, to the human operated aerial vehicles, it is still far less used to the fact that people are dubious about flying in or flying an unmanned vehicle. It is all about giving the control right to the computer (which is the Artificial Intelligence) for making decisions based on the situation like human do but this has not been easy to make people understand that it’s safe and to continue the enhancement on it. These days there are many types of UAVs available in the market for consumer use, for applications like photography to play games, to map routes, to monitor buildings, for security purposes and much more. Plus, these UAVs are also being widely used by the military for surveillance and for security reasons. One of the most commonly used consumer product is a quadcopter or quadrotor. The research carried out used modern tools (i.e., SolidWorks, Java Net Beans and MATLAB/Simulink) to model controls system for Quadcopter UAV with haptic control system to control the quadcopter in a virtual simulation environment and in real time environment. A mathematical model for the controlling the quadcopter in simulations and real time environments were introduced. Where, the design methodology for the quadcopter was defined. This methodology was then enhanced to develop a virtual simulation and real time environments for simulations and experiments. Furthermore, the haptic control was then implemented with designed control system to control the quadcopter in virtual simulation and real time experiments. By using the mathematical model of quadcopter, PID & PD control techniques were used to model the control setup for the quadcopter altitude and motion controls as work progressed. Firstly, the dynamic model is developed using a simple set of equations which evolves further by using complex control & mathematical model with precise function of actuators and aerodynamic coefficients Figure5-7. The presented results are satisfying and shows that flight experiments and simulations of the quadcopter control using haptics is a novel area of research which helps perform operations more successfully and give more control to the operator when operating in difficult environments. By using haptic accidents can be minimised and the functional performance of the operator and the UAV will be significantly enhanced. This concept and area of research of haptic control can be further developed accordingly to the needs of specific applications

    A Smart Products Lifecycle Management (sPLM) Framework - Modeling for Conceptualization, Interoperability, and Modularity

    Get PDF
    Autonomy and intelligence have been built into many of today’s mechatronic products, taking advantage of low-cost sensors and advanced data analytics technologies. Design of product intelligence (enabled by analytics capabilities) is no longer a trivial or additional option for the product development. The objective of this research is aimed at addressing the challenges raised by the new data-driven design paradigm for smart products development, in which the product itself and the smartness require to be carefully co-constructed. A smart product can be seen as specific compositions and configurations of its physical components to form the body, its analytics models to implement the intelligence, evolving along its lifecycle stages. Based on this view, the contribution of this research is to expand the “Product Lifecycle Management (PLM)” concept traditionally for physical products to data-based products. As a result, a Smart Products Lifecycle Management (sPLM) framework is conceptualized based on a high-dimensional Smart Product Hypercube (sPH) representation and decomposition. First, the sPLM addresses the interoperability issues by developing a Smart Component data model to uniformly represent and compose physical component models created by engineers and analytics models created by data scientists. Second, the sPLM implements an NPD3 process model that incorporates formal data analytics process into the new product development (NPD) process model, in order to support the transdisciplinary information flows and team interactions between engineers and data scientists. Third, the sPLM addresses the issues related to product definition, modular design, product configuration, and lifecycle management of analytics models, by adapting the theoretical frameworks and methods for traditional product design and development. An sPLM proof-of-concept platform had been implemented for validation of the concepts and methodologies developed throughout the research work. The sPLM platform provides a shared data repository to manage the product-, process-, and configuration-related knowledge for smart products development. It also provides a collaborative environment to facilitate transdisciplinary collaboration between product engineers and data scientists

    Outdoor operations of multiple quadrotors in windy environment

    Get PDF
    Coordinated multiple small unmanned aerial vehicles (sUAVs) offer several advantages over a single sUAV platform. These advantages include improved task efficiency, reduced task completion time, improved fault tolerance, and higher task flexibility. However, their deployment in an outdoor environment is challenging due to the presence of wind gusts. The coordinated motion of a multi-sUAV system in the presence of wind disturbances is a challenging problem when considering collision avoidance (safety), scalability, and communication connectivity. Performing wind-agnostic motion planning for sUAVs may produce a sizeable cross-track error if the wind on the planned route leads to actuator saturation. In a multi-sUAV system, each sUAV has to locally counter the wind disturbance while maintaining the safety of the system. Such continuous manipulation of the control effort for multiple sUAVs under uncertain environmental conditions is computationally taxing and can lead to reduced efficiency and safety concerns. Additionally, modern day sUAV systems are susceptible to cyberattacks due to their use of commercial wireless communication infrastructure. This dissertation aims to address these multi-faceted challenges related to the operation of outdoor rotor-based multi-sUAV systems. A comprehensive review of four representative techniques to measure and estimate wind speed and direction using rotor-based sUAVs is discussed. After developing a clear understanding of the role wind gusts play in quadrotor motion, two decentralized motion planners for a multi-quadrotor system are implemented and experimentally evaluated in the presence of wind disturbances. The first planner is rooted in the reinforcement learning (RL) technique of state-action-reward-state-action (SARSA) to provide generalized path plans in the presence of wind disturbances. While this planner provides feasible trajectories for the quadrotors, it does not provide guarantees of collision avoidance. The second planner implements a receding horizon (RH) mixed-integer nonlinear programming (MINLP) model that is integrated with control barrier functions (CBFs) to guarantee collision-free transit of the multiple quadrotors in the presence of wind disturbances. Finally, a novel communication protocol using Ethereum blockchain-based smart contracts is presented to address the challenge of secure wireless communication. The U.S. sUAV market is expected to be worth $92 Billion by 2030. The Association for Unmanned Vehicle Systems International (AUVSI) noted in its seminal economic report that UAVs would be responsible for creating 100,000 jobs by 2025 in the U.S. The rapid proliferation of drone technology in various applications has led to an increasing need for professionals skilled in sUAV piloting, designing, fabricating, repairing, and programming. Engineering educators have recognized this demand for certified sUAV professionals. This dissertation aims to address this growing sUAV-market need by evaluating two active learning-based instructional approaches designed for undergraduate sUAV education. The two approaches leverages the interactive-constructive-active-passive (ICAP) framework of engagement and explores the use of Competition based Learning (CBL) and Project based Learning (PBL). The CBL approach is implemented through a drone building and piloting competition that featured 97 students from undergraduate and graduate programs at NJIT. The competition focused on 1) drone assembly, testing, and validation using commercial off-the-shelf (COTS) parts, 2) simulation of drone flight missions, and 3) manual and semi-autonomous drone piloting were implemented. The effective student learning experience from this competition served as the basis of a new undergraduate course on drone science fundamentals at NJIT. This undergraduate course focused on the three foundational pillars of drone careers: 1) drone programming using Python, 2) designing and fabricating drones using Computer-Aided Design (CAD) and rapid prototyping, and 3) the US Federal Aviation Administration (FAA) Part 107 Commercial small Unmanned Aerial Vehicles (sUAVs) pilot test. Multiple assessment methods are applied to examine the students’ gains in sUAV skills and knowledge and student attitudes towards an active learning-based approach for sUAV education. The use of active learning techniques to address these challenges lead to meaningful student engagement and positive gains in the learning outcomes as indicated by quantitative and qualitative assessments

    Automation and Robotics: Latest Achievements, Challenges and Prospects

    Get PDF
    This SI presents the latest achievements, challenges and prospects for drives, actuators, sensors, controls and robot navigation with reverse validation and applications in the field of industrial automation and robotics. Automation, supported by robotics, can effectively speed up and improve production. The industrialization of complex mechatronic components, especially robots, requires a large number of special processes already in the pre-production stage provided by modelling and simulation. This area of research from the very beginning includes drives, process technology, actuators, sensors, control systems and all connections in mechatronic systems. Automation and robotics form broad-spectrum areas of research, which are tightly interconnected. To reduce costs in the pre-production stage and to reduce production preparation time, it is necessary to solve complex tasks in the form of simulation with the use of standard software products and new technologies that allow, for example, machine vision and other imaging tools to examine new physical contexts, dependencies and connections

    Study on the design of DIY social robots

    Get PDF

    Fused deposition modelling (FDM) to fabricate a transitional vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV) for transportation of medical supplies in underdeveloped areas.

    Get PDF
    Masters Degree. University of KwaZulu- Natal, Durban.This dissertation’s work has focused on the design and development of a prototype UAV that aims to facilitate the delivery of emergency medical aid supplies to remote locations within South Africa (SA). This research has conducted a conceptualized design of a tilt-rotor VTOL UAV named Airslipper, which was entirely fabricated using FDM methods. Identification of key performance parameters within the vehicle’s mechatronic design enabled this research to conduct a simultaneous optimization on the propeller-based propulsion system and aerodynamic configuration. Execution of MATLAB’s ‘gamultiobj’ function on two parametrically formulated objective functions resulted in a UAV setup that increased flight endurance by 8 . This improvement amplified the effectiveness of this system and expanded the service radius distance by .1 m. The outcome of a stability and sensitivity analysis performed on the Airslipper’s aerodynamic surfaces provided critical information that contributed towards the vehicle’s flight characteristics. Findings indicated a stabilized design that exhibited appropriate frequency plots for both longitudinal and lateral stability modes. The addition of a plane analysis, which included viscous and inertial effects, offered essential drag and pressure coefficients, which aided in the final design. This research correspondingly conducted several CFD simulations on an Airslipper model, which allowed this work to examine further the fluid behaviour characteristics endured on the vehicle in both VTOL and Fixed Wing (FW) modes. Simulation findings revealed standard pressure distributions, which confirmed thrust and lift forces for the relevant components without performance compromise. This research proposed to experimentally investigate a correction factor for an FDM fabricated aerofoil that aimed to determine what structural effects were apparent for a printed part with varying FDM parameters. Outcomes demonstrated greater resilience to failure for parts that had reduced layer heights and increased infill percentages. Fabrication of the Airslipper comprised of 99 individually printed parts that encompassed a specific parameter combination which pertained to the design’s importance. Validating the prototype’s functionality was achieved through a series of hover tests that generated suitable data logs plots for the control response, actuator output signals, vibration metrics, and power. This research concluded by discussing the Airslipper’s design and fabrication method with further mentioning of recommendations for potential improvements

    Design of autonomous robotic system for removal of porcupine crab spines

    Get PDF
    Among various types of crabs, the porcupine crab is recognized as a highly potential crab meat resource near the off-shore northwest Atlantic ocean. However, their long, sharp spines make it difficult to be manually handled. Despite the fact that automation technology is widely employed in the commercial seafood processing industry, manual processing methods still dominate in today’s crab processing, which causes low production rates and high manufacturing costs. This thesis proposes a novel robot-based porcupine crab spine removal method. Based on the 2D image and 3D point cloud data captured by the Microsoft Azure Kinect 3D RGB-D camera, the crab’s 3D point cloud model can be reconstructed by using the proposed point cloud processing method. After that, the novel point cloud slicing method and the 2D image and 3D point cloud combination methods are proposed to generate the robot spine removal trajectory. The 3D model of the crab with the actual dimension, robot working cell, and endeffector are well established in Solidworks [1] and imported into the Robot Operating System (ROS) [2] simulation environment for methodology validation and design optimization. The simulation results show that both the point cloud slicing method and the 2D and 3D combination methods can generate a smooth and feasible trajectory. Moreover, compared with the point cloud slicing method, the 2D and 3D combination method is more precise and efficient, which has been validated in the real experiment environment. The automated experiment platform, featuring a 3D-printed end-effector and crab model, has been successfully set up. Results from the experiments indicate that the crab model can be accurately reconstructed, and the central line equations of each spine were calculated to generate a spine removal trajectory. Upon execution with a real robot arm, all spines were removed successfully. This thesis demonstrates the proposed method’s capability to achieve expected results and its potential for application in various manufacturing processes such as painting, polishing, and deburring for parts of different shapes and materials

    Practical investigations in robot localization using ultra-wideband sensors

    Get PDF
    Robot navigation is rudimentary compared to the capabilities of humans and animals to move about their environments. One of the core processes of navigation is localization, the problem of answering where one is at the present time. Robot localization is the science of using various sensors to inform a robot of where it is within its environment. Ultra-wideband (UWB) radio is one such sensor technology that can return absolute position information. The algorithm to accomplish this is known as multilateration, which uses a collection of distance measurements between multiple robot tag and environment anchor pairs to calculate the tag’s position. UWB is especially suited to the task of returning precise distance measurements due to its capabilities of short duration, high amplitude pulse generation and detection. Decawave Ltd. has created an UWB integrated circuit to perform ranging and a suite of products to support this technology. Claimed and verified accuracies using this implementation are on the order of 10cm. This thesis describes various experiments carried out using Decawave technology for robot localization. The progression of the chapters starts with commercial product verification before moving into development and testing in various environments of an open-source driver package for the Robot Operating System (ROS), then the development of a novel phase difference of arrival (PDoA) sensor for three-dimensional robot localization without an UWB anchor mesh, before concluding with future research directions and commercialization potential of UWB. This thesis is designed as a compilation of all that the author has learned through primary and secondary research over the past three years of investigation. The primary contributions are: 1. A modular ROS UWB driver framework and series of ROS bags for offline experimentation with multilateration algorithms. 2. A robust ROS framework for comparing motion capture system (MoCap) ground truth vs sensor data for rigorous statistical analysis and characterization of multiple sensors. 3. Development of a novel UWB PDoA sensor array and data model to allow 3D localization of a target from a single point without the deployment of an antenna mesh

    Engineering and built environment project conference 2015: book of abstracts - Toowoomba, Australia, 21-25 September 2015

    Get PDF
    Book of Abstracts of the USQ Engineering and Built Environment Conference 2015, held Toowoomba, Australia, 21-25 September 2015. These proceedings include extended abstracts of the verbal presentations that are delivered at the project conference. The work reported at the conference is the research undertaken by students in meeting the requirements of courses ENG4111/ENG4112 Research Project for undergraduate or ENG8411/ENG8412 Research Project and Dissertation for postgraduate students
    corecore