1,700 research outputs found

    Occlusion handling in multiple people tracking

    Get PDF
    Object tracking with occlusion handling is a challenging problem in automated video surveillance. Occlusion handling and tracking have always been considered as separate modules. We have proposed an automated video surveillance system, which automatically detects occlusions and perform occlusion handling, while the tracker continues to track resulting separated objects. A new approach based on sub-blobbing is presented for tracking objects accurately and steadily, when the target encounters occlusion in video sequences. We have used a feature-based framework for tracking, which involves feature extraction and feature matching

    Vision-Based Production of Personalized Video

    No full text
    In this paper we present a novel vision-based system for the automated production of personalised video souvenirs for visitors in leisure and cultural heritage venues. Visitors are visually identified and tracked through a camera network. The system produces a personalized DVD souvenir at the end of a visitor’s stay allowing visitors to relive their experiences. We analyze how we identify visitors by fusing facial and body features, how we track visitors, how the tracker recovers from failures due to occlusions, as well as how we annotate and compile the final product. Our experiments demonstrate the feasibility of the proposed approach

    Adaptive foreground segmentation using fuzzy approach

    Get PDF
    Intelligent visual surveillance which attempts to detect, recognize and track certain objects from image sequences is becoming an active research topic in computer vision community. Background modeling and foreground segmentation are the first two and the most important steps in any intelligent visual surveillance systems. The accuracy of these two steps highly effects performance of the following steps. In this thesis, we propose a simple and novel method which employs histogram based median method for background modeling and a fuzzy k-Means clustering approach for foreground segmentation. Experiments on a set of videos and benchmark image sequences show the effectiveness of the proposed method. Compared with other two contemporary methods - k -Means clustering and Mixture of Gaussians (MoG) - the proposed method is not only time efficient but also provides better segmentation results

    Human object annotation for surveillance video forensics

    Get PDF
    A system that can automatically annotate surveillance video in a manner useful for locating a person with a given description of clothing is presented. Each human is annotated based on two appearance features: primary colors of clothes and the presence of text/logos on clothes. The annotation occurs after a robust foreground extraction stage employing a modified Gaussian mixture model-based approach. The proposed pipeline consists of a preprocessing stage where color appearance of an image is improved using a color constancy algorithm. In order to annotate color information for human clothes, we use the color histogram feature in HSV space and find local maxima to extract dominant colors for different parts of a segmented human object. To detect text/logos on clothes, we begin with the extraction of connected components of enhanced horizontal, vertical, and diagonal edges in the frames. These candidate regions are classified as text or nontext on the basis of their local energy-based shape histogram features. Further, to detect humans, a novel technique has been proposed that uses contourlet transform-based local binary pattern (CLBP) features. In the proposed method, we extract the uniform direction invariant LBP feature descriptor for contourlet transformed high-pass subimages from vertical and diagonal directional bands. In the final stage, extracted CLBP descriptors are classified by a trained support vector machine. Experimental results illustrate the superiority of our method on large-scale surveillance video data

    Impact of Traffic Sign Diversity on Autonomous Vehicles: A Literature Review

    Get PDF
    Traffic sign classification is indispensable for road traffic systems, including automated ones. There is a fundamental difference in the visual appearance of traffic signs from one country to another. Each dataset has its design standards and regulations based on shape, color, and information content, making implementing classification and recognition techniques more difficult. This paper aims to assess the influence of traffic sign diversity on autonomous vehicles (AVs) by reviewing several previous studies, comparing, summarizing their results, and focusing on classifying and detecting traffic sign datasets based on color, shape, and deep learning spaces using various methods and applications. Furthermore, it covers the main challenges facing road designers and planners considering changes to road safety infrastructure. It will be argued that compiling and standardizing a comprehensive global database of traffic signs is very difficult because it is costly and complex in application. However, it is still one of the possible solutions for the coming decades. Recommendations for future developments are also presented in this study
    corecore