5,362 research outputs found

    Data science: a game changer for science and innovation

    Get PDF
    AbstractThis paper shows data science's potential for disruptive innovation in science, industry, policy, and people's lives. We present how data science impacts science and society at large in the coming years, including ethical problems in managing human behavior data and considering the quantitative expectations of data science economic impact. We introduce concepts such as open science and e-infrastructure as useful tools for supporting ethical data science and training new generations of data scientists. Finally, this work outlines SoBigData Research Infrastructure as an easy-to-access platform for executing complex data science processes. The services proposed by SoBigData are aimed at using data science to understand the complexity of our contemporary, globally interconnected society

    Data analytics 2016: proceedings of the fifth international conference on data analytics

    Get PDF

    Explainable Artificial Intelligence Applications in Cyber Security: State-of-the-Art in Research

    Get PDF
    This survey presents a comprehensive review of current literature on Explainable Artificial Intelligence (XAI) methods for cyber security applications. Due to the rapid development of Internet-connected systems and Artificial Intelligence in recent years, Artificial Intelligence including Machine Learning and Deep Learning has been widely utilized in the fields of cyber security including intrusion detection, malware detection, and spam filtering. However, although Artificial Intelligence-based approaches for the detection and defense of cyber attacks and threats are more advanced and efficient compared to the conventional signature-based and rule-based cyber security strategies, most Machine Learning-based techniques and Deep Learning-based techniques are deployed in the “black-box” manner, meaning that security experts and customers are unable to explain how such procedures reach particular conclusions. The deficiencies of transparencies and interpretability of existing Artificial Intelligence techniques would decrease human users’ confidence in the models utilized for the defense against cyber attacks, especially in current situations where cyber attacks become increasingly diverse and complicated. Therefore, it is essential to apply XAI in the establishment of cyber security models to create more explainable models while maintaining high accuracy and allowing human users to comprehend, trust, and manage the next generation of cyber defense mechanisms. Although there are papers reviewing Artificial Intelligence applications in cyber security areas and the vast literature on applying XAI in many fields including healthcare, financial services, and criminal justice, the surprising fact is that there are currently no survey research articles that concentrate on XAI applications in cyber security. Therefore, the motivation behind the survey is to bridge the research gap by presenting a detailed and up-to-date survey of XAI approaches applicable to issues in the cyber security field. Our work is the first to propose a clear roadmap for navigating the XAI literature in the context of applications in cyber security

    Computational interaction models for automated vehicles and cyclists

    Get PDF
    Cyclists’ safety is crucial for a sustainable transport system. Cyclists are considered vulnerableroad users because they are not protected by a physical compartment around them. In recentyears, passenger car occupants’ share of fatalities has been decreasing, but that of cyclists hasactually increased. Most of the conflicts between cyclists and motorized vehicles occur atcrossings where they cross each other’s path. Automated vehicles (AVs) are being developedto increase traffic safety and reduce human errors in driving tasks, including when theyencounter cyclists at intersections. AVs use behavioral models to predict other road user’sbehaviors and then plan their path accordingly. Thus, there is a need to investigate how cyclistsinteract and communicate with motorized vehicles at conflicting scenarios like unsignalizedintersections. This understanding will be used to develop accurate computational models ofcyclists’ behavior when they interact with motorized vehicles in conflict scenarios.The overall goal of this thesis is to investigate how cyclists communicate and interact withmotorized vehicles in the specific conflict scenario of an unsignalized intersection. In the firstof two studies, naturalistic data was used to model the cyclists’ decision whether to yield to apassenger car at an unsignalized intersection. Interaction events were extracted from thetrajectory dataset, and cyclists’ behavioral cues were added from the sensory data. Bothcyclists’ kinematics and visual cues were found to be significant in predicting who crossed theintersection first. The second study used a cycling simulator to acquire in-depth knowledgeabout cyclists’ behavioral patterns as they interacted with an approaching vehicle at theunsignalized intersection. Two independent variables were manipulated across the trials:difference in time to arrival at the intersection (DTA) and visibility condition (field of viewdistance). Results from the mixed effect logistic model showed that only DTA affected thecyclist’s decision to cross before the vehicle. However, increasing the visibility at theintersection reduced the severity of the cyclists’ braking profiles. Both studies contributed tothe development of computational models of cyclist behavior that may be used to support safeautomated driving.Future work aims to find differences in cyclists’ interactions with different vehicle types, suchas passenger cars, taxis, and trucks. In addition, the interaction process may also be evaluatedfrom the driver’s perspective by using a driving simulator instead of a riding simulator. Thissetup would allow us to investigate how drivers respond to cyclists at the same intersection.The resulting data will contribute to the development of accurate predictive models for AVs

    TravelBot:Utilising Social Media Dialogue to Provide Journey Disruption Alerts

    Get PDF
    ACKNOWLEDGEMENTS The research described here is supported by the award made by the RCUK Digital Economy programme to the dot.rural Digital Economy Research Hub; award reference: EP/G066051/1. We extend our grateful thanks to the participants who have contributed to the studies throughout, and to the industry partner FirstGroup plc for their support.Peer reviewedPublisher PD

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov

    Making overtaking cyclists safer: Driver intention models in threat assessment and decision-making of advanced driver assistance system

    Get PDF
    Introduction: The number of cyclist fatalities makes up 3% of all fatalities globally and 7.8% in the European Union. Cars overtaking cyclists on rural roads are complex situations. Miscommunication and misunderstandings between road users may lead to crashes and severe injuries, particularly to cyclists, due to lack of protection. When making a car overtaking a cyclist safer, it is important to understand the interaction between road users and use in the development of an Advanced Driver Assistance System (ADAS). Methods: First, a literature review was carried out on driver and interaction modeling. A Unified Modeling Language (UML) framework was introduced to operationalize the interaction definition to be used in the development of ADAS. Second, the threat assessment and decision-making algorithm were developed that included the driver intention model. The counterfactual simulation was carried out on artificial crash data and field data to understand the intention-based ADAS\u27s performance and crash avoidance compared to a conventional system. The method focused on cars overtaking cyclists when an oncoming vehicle was present. Results: An operationalized definition of interaction was proposed to highlight the interaction between road users. The framework proposed uses UML diagrams to include interaction in the existing driver modeling approaches. The intention-based ADAS results showed that using the intention model, earlier warning or emergency braking intervention can be activated to avoid a potential rear-end collision with a cyclist without increasing more false activations than a conventional system. Conclusion: The approach used to integrate the driver intention model in developing an intention-based ADAS can improve the system\u27s effectiveness without compromising its acceptance. The intention-based ADAS has implications towards reducing worldwide road fatalities and in achieving sustainable development goals and car assessment program

    Through the clouds : urban analytics for smart cities

    Get PDF
    Data has been collected since mankind, but in the recent years the technical innovations enable us to collect exponentially growing amounts of data through the use of sensors, smart devices and other sources. In her lecture Nanda will explore the role of Big Data in urban environments. She will give an introduction to the world of Big Data and Smart Cities, and an assessment of the role that data analytics plays in the current state of the digital transformation in our cities. Examples are given in the field of energy and mobility
    • …
    corecore