1,198 research outputs found

    Prediction of MHC-peptide binding: a systematic and comprehensive overview

    Get PDF
    T cell immune responses are driven by the recognition of peptide antigens (T cell epitopes) that are bound to major histocompatibility complex (MHC) molecules. T cell epitope immunogenicity is thus contingent on several events, including appropriate and effective processing of the peptide from its protein source, stable peptide binding to the MHC molecule, and recognition of the MHC-bound peptide by the T cell receptor. Of these three hallmarks, MHC-peptide binding is the most selective event that determines T cell epitopes. Therefore, prediction of MHC-peptide binding constitutes the principal basis for anticipating potential T cell epitopes. The tremendous relevance of epitope identification in vaccine design and in the monitoring of T cell responses has spurred the development of many computational methods for predicting MHC-peptide binding that improve the efficiency and economics of T cell epitope identification. In this report, we will systematically examine the available methods for predicting MHC-peptide binding and discuss their most relevant advantages and drawbacks

    Immunoinformatics: Predicting Peptide–MHC Binding

    Get PDF
    Immunoinformatics is a discipline that applies methods of computer science to study and model the immune system. A fundamental question addressed by immunoinformatics is how to understand the rules of antigen presentation by MHC molecules to T cells, a process that is central to adaptive immune responses to infections and cancer. In the modern era of personalized medicine, the ability to model and predict which antigens can be presented by MHC is key to manipulating the immune system and designing strategies for therapeutic intervention. Since the MHC is both polygenic and extremely polymorphic, each individual possesses a personalized set of MHC molecules with different peptide-binding specificities, and collectively they present a unique individualized peptide imprint of the ongoing protein metabolism. Mapping all MHC allotypes is an enormous undertaking that cannot be achieved without a strong bioinformatics component. Computational tools for the prediction of peptide?MHC binding have thus become essential in most pipelines for T cell epitope discovery and an inescapable component of vaccine and cancer research. Here, we describe the development of several such tools, from pioneering efforts to the current state-of-the-art methods, that have allowed for accurate predictions of peptide binding of all MHC molecules, even including those that have not yet been characterized experimentally.Fil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina. Technical University of Denmark; DinamarcaFil: Andreatta, Massimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Buus, Søren. Universidad de Copenhagen; Dinamarc

    APPLICATION OF MACHINE LEARNING APPROACHES TO EMPOWER DRUG DEVELOPMENT

    Get PDF
    Human health, one of the major topics in Life Science, is facing intensified challenges, including cancer, pandemic outbreaks, and antimicrobial resistance. Thus, new medicines with unique advantages, including peptide-based vaccines and permeable small molecule antimicrobials, are in urgent need. However, the drug development process is long, complex, and risky with no guarantee of success. Also, the improvements in techniques applied in genomics, proteomics, computational biology, and clinical trials significantly increase the data complexity and volume, which imposes higher requirements on the drug development pipeline. In recent years, machine learning (ML) methods were employed to support drug development in various aspects and were shown to be highly effective. Here, we explored the application of advanced ML approaches to empower the development of peptide-based vaccines and permeable antimicrobials. First, the peptide-based vaccines targeting pancreatic cancer and COVID-19 were predicted and screened via multiple approaches. Next, novel structure-based methods to improve the performance of peptide: MHC binding affinity prediction were developed, including an HLA modeling pipeline that provides structures for docking-based peptide binder validation, and hierarchical clustering of HLA I into supertypes and subtypes that have similar peptide binding specificity. Finally, the physicochemical properties governing the permeability of small molecules into multidrug-resistant Pseudomonas aeruginosa cells were selected using a random forest model. In conclusion, the use of machine learning methods could accelerate the drug development process at a lower cost and promote data-based decision-making if used properly

    Sequence analysis methods for the design of cancer vaccines that target tumor-specific mutant antigens (neoantigens)

    Get PDF
    The human adaptive immune system is programmed to distinguish between self and non-self proteins and if trained to recognize markers unique to a cancer, it may be possible to stimulate the selective destruction of cancer cells. Therapeutic cancer vaccines aim to boost the immune system by selectively increasing the population of T cells specifically targeted to the tumor-unique antigens, thereby initiating cancer cell death.. In the past, this approach has primarily focused on targeted selection of ‘shared’ tumor antigens, found across many patients. The advent of massively parallel sequencing and specialized analytical approaches has enabled more efficient characterization of tumor-specific mutant antigens, or neoantigens. Specifically, methods to predict which tumor-specific mutant peptides (neoantigens) can elicit anti-tumor T cell recognition improve predictions of immune checkpoint therapy response and identify one or more neoantigens as targets for personalized vaccines. Selecting the best/most immunogenic neoantigens from a large number of mutations is an important challenge, in particular in cancers with a high mutational load, such as melanomas and smoker-associated lung cancers. To address such a challenging task, Chapter 1 of this thesis describes a genome-guided in silico approach to identifying tumor neoantigens that integrates tumor mutation and expression data (DNA- and RNA-Seq). The cancer vaccine design process, from read alignment to variant calling and neoantigen prediction, typically assumes that the genotype of the Human Reference Genome sequence surrounding each somatic variant is representative of the patient’s genome sequence, and does not account for the effect of nearby variants (somatic or germline) in the neoantigenic peptide sequence. Because the accuracy of neoantigen identification has important implications for many clinical trials and studies of basic cancer immunology, Chapter 2 describes and supports the need for patient-specific inclusion of proximal variants to address this previously oversimplified assumption in the identification of neoantigens. The method of neoantigen identification described in Chapter 1 was subsequently extended (Chapter 3) and improved by the addition of a modular workflow that aids in each component of the neoantigen prediction process from neoantigen identification, prioritization, data visualization, and DNA vaccine design. These chapters describe massively parallel sequence analysis methods that will help in the identification and subsequent refinement of patient-specific antigens for use in personalized immunotherapy

    Automated benchmarking of peptide-MHC class I binding predictions

    Get PDF
    Motivation: Numerous in silico methods predicting peptide binding to major histocompatibility complex (MHC) class I molecules have been developed over the last decades. However, the multitude of available prediction tools makes it non-trivial for the end-user to select which tool to use for a given task. To provide a solid basis on which to compare different prediction tools, we here describe a framework for the automated benchmarking of peptide-MHC class I binding prediction tools. The framework runs weekly benchmarks on data that are newly entered into the Immune Epitope Database (IEDB), giving the public access to frequent, up-to-date performance evaluations of all participating tools. To overcome potential selection bias in the data included in the IEDB, a strategy was implemented that suggests a set of peptides for which different prediction methods give divergent predictions as to their binding capability. Upon experimental binding validation, these peptides entered the benchmark study. Results: The benchmark has run for 15 weeks and includes evaluation of 44 datasets covering 17 MHC alleles and more than 4000 peptide-MHC binding measurements. Inspection of the results allows the end-user to make educated selections between participating tools. Of the four participating servers, NetMHCpan performed the best, followed by ANN, SMM and finally ARB. Availability and implementation: Up-to-date performance evaluations of each server can be found online at http://tools.iedb.org/auto-bench/mhci/weekly. All prediction tool developers are invited to participate in the benchmark. Sign-up instructions are available at http://tools.iedb.org/auto-bench/mhci/join.Fil: Trolle, Thomas. Technical University of Denmark; DinamarcaFil: Metushi, Imir G.. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Greenbaum, Jason A.. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Kim, Yohan. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Sidney, John. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Lund, Ole. Technical University of Denmark; DinamarcaFil: Sette, Alessandro. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Nielsen, Morten. Technical University of Denmark; Dinamarca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentin

    MODPROPEP: a program for knowledge-based modeling of protein–peptide complexes

    Get PDF
    MODPROPEP is a web server for knowledge-based modeling of protein–peptide complexes, specifically peptides in complex with major histocompatibility complex (MHC) proteins and kinases. The available crystal structures of protein–peptide complexes in PDB are used as templates for modeling peptides of desired sequence in the substrate-binding pocket of MHCs or protein kinases. The substrate peptides are modeled using the same backbone conformation as in the template and the side-chain conformations are obtained by the program SCWRL. MODPROPEP provides a number of user-friendly interfaces for visualizing the structure of the modeled protein–peptide complexes and analyzing the contacts made by the modeled peptide ligand in the substrate-binding pocket of the MHC or protein kinase. Analysis of these specific inter-molecular contacts is crucial for understanding structural basis of the substrate specificity of these two protein families. This software also provides appropriate interfaces for identifying, putative MHC-binding peptides in the sequence of an antigen or phosphorylation sites on the substrate protein of a kinase, by scoring these inter-molecular contacts using residue-based statistical pair potentials. MODPROPEP would complement various available sequence-based programs (SYFPEITHI, SCANSITE, etc.) for predicting substrates of MHCs and protein kinases. The program is available at http://www.nii.res.in/modpropep.htm

    Scrutinizing human MHC polymorphism:supertype analysis using Poisson-Boltzmann electrostatics and clustering

    Get PDF
    Peptide-binding MHC proteins are thought the most variable proteins across the human population; the extreme MHC polymorphism observed is functionally important and results from constrained divergent evolution. MHCs have vital functions in immunology and homeostasis: cell surface MHC class I molecules report cell status to CD8+ T cells, NKT cells and NK cells, thus playing key roles in pathogen defence, as well as mediating smell recognition, mate choice, Adverse Drug Reactions, and transplantation rejection. MHC peptide specificity falls into several supertypes exhibiting commonality of binding. It seems likely that other supertypes exist relevant to other functions. Since comprehensive experimental characterization is intractable, structure-based bioinformatics is the only viable solution. We modelled functional MHC proteins by homology and used calculated Poisson-Boltzmann electrostatics projected from the top surface of the MHC as multi-dimensional descriptors, analysing them using state-of-the-art dimensionality reduction techniques and clustering algorithms. We were able to recover the 3 MHC loci as separate clusters and identify clear sub-groups within them, vindicating unequivocally our choice of both data representation and clustering strategy. We expect this approach to make a profound contribution to the study of MHC polymorphism and its functional consequences, and, by extension, other burgeoning structural systems, such as GPCRs

    3pHLA-score improves structure-based peptide-HLA binding affinity prediction

    Get PDF
    Binding of peptides to Human Leukocyte Antigen (HLA) receptors is a prerequisite for triggering immune response. Estimating peptide-HLA (pHLA) binding is crucial for peptide vaccine target identification and epitope discovery pipelines. Computational methods for binding affinity prediction can accelerate these pipelines. Currently, most of those computational methods rely exclusively on sequence-based data, which leads to inherent limitations. Recent studies have shown that structure-based data can address some of these limitations. In this work we propose a novel machine learning (ML) structure-based protocol to predict binding affinity of peptides to HLA receptors. For that, we engineer the input features for ML models by decoupling energy contributions at different residue positions in peptides, which leads to our novel per-peptide-position protocol. Using Rosetta’s ref2015 scoring function as a baseline we use this protocol to develop 3pHLA-score. Our per-peptide-position protocol outperforms the standard training protocol and leads to an increase from 0.82 to 0.99 of the area under the precision-recall curve. 3pHLA-score outperforms widely used scoring functions (AutoDock4, Vina, Dope, Vinardo, FoldX, GradDock) in a structural virtual screening task. Overall, this work brings structure-based methods one step closer to epitope discovery pipelines and could help advance the development of cancer and viral vaccines

    T-cell epitope prediction and immune complex simulation using molecular dynamics: state of the art and persisting challenges

    Get PDF
    Atomistic Molecular Dynamics provides powerful and flexible tools for the prediction and analysis of molecular and macromolecular systems. Specifically, it provides a means by which we can measure theoretically that which cannot be measured experimentally: the dynamic time-evolution of complex systems comprising atoms and molecules. It is particularly suitable for the simulation and analysis of the otherwise inaccessible details of MHC-peptide interaction and, on a larger scale, the simulation of the immune synapse. Progress has been relatively tentative yet the emergence of truly high-performance computing and the development of coarse-grained simulation now offers us the hope of accurately predicting thermodynamic parameters and of simulating not merely a handful of proteins but larger, longer simulations comprising thousands of protein molecules and the cellular scale structures they form. We exemplify this within the context of immunoinformatics

    Computational modelling approaches to vaccinology

    Get PDF
    Excepting the Peripheral and Central Nervous Systems, the Immune System is the most complex of somatic systems in higher animals. This complexity manifests itself at many levels from the molecular to that of the whole organism. Much insight into this confounding complexity can be gained through computational simulation. Such simulations range in application from epitope prediction through to the modelling of vaccination strategies. In this review, we evaluate selectively various key applications relevant to computational vaccinology: these include technique that operates at different scale that is, from molecular to organisms and even to population level
    corecore