6,919 research outputs found

    An Authorization Framework Resilient to Policy Evaluation Failures

    Full text link

    ANCHOR: logically-centralized security for Software-Defined Networks

    Get PDF
    While the centralization of SDN brought advantages such as a faster pace of innovation, it also disrupted some of the natural defenses of traditional architectures against different threats. The literature on SDN has mostly been concerned with the functional side, despite some specific works concerning non-functional properties like 'security' or 'dependability'. Though addressing the latter in an ad-hoc, piecemeal way, may work, it will most likely lead to efficiency and effectiveness problems. We claim that the enforcement of non-functional properties as a pillar of SDN robustness calls for a systemic approach. As a general concept, we propose ANCHOR, a subsystem architecture that promotes the logical centralization of non-functional properties. To show the effectiveness of the concept, we focus on 'security' in this paper: we identify the current security gaps in SDNs and we populate the architecture middleware with the appropriate security mechanisms, in a global and consistent manner. Essential security mechanisms provided by anchor include reliable entropy and resilient pseudo-random generators, and protocols for secure registration and association of SDN devices. We claim and justify in the paper that centralizing such mechanisms is key for their effectiveness, by allowing us to: define and enforce global policies for those properties; reduce the complexity of controllers and forwarding devices; ensure higher levels of robustness for critical services; foster interoperability of the non-functional property enforcement mechanisms; and promote the security and resilience of the architecture itself. We discuss design and implementation aspects, and we prove and evaluate our algorithms and mechanisms, including the formalisation of the main protocols and the verification of their core security properties using the Tamarin prover.Comment: 42 pages, 4 figures, 3 tables, 5 algorithms, 139 reference

    On designing large, secure and resilient networked systems

    Get PDF
    2019 Summer.Includes bibliographical references.Defending large networked systems against rapidly evolving cyber attacks is challenging. This is because of several factors. First, cyber defenders are always fighting an asymmetric warfare: While the attacker needs to find just a single security vulnerability that is unprotected to launch an attack, the defender needs to identify and protect against all possible avenues of attacks to the system. Various types of cost factors, such as, but not limited to, costs related to identifying and installing defenses, costs related to security management, costs related to manpower training and development, costs related to system availability, etc., make this asymmetric warfare even challenging. Second, newer and newer cyber threats are always emerging - the so called zero-day attacks. It is not possible for a cyber defender to defend against an attack for which defenses are yet unknown. In this work, we investigate the problem of designing large and complex networks that are secure and resilient. There are two specific aspects of the problem that we look into. First is the problem of detecting anomalous activities in the network. While this problem has been variously investigated, we address the problem differently. We posit that anomalous activities are the result of mal-actors interacting with non mal-actors, and such anomalous activities are reflected in changes to the topological structure (in a mathematical sense) of the network. We formulate this problem as that of Sybil detection in networks. For our experimentation and hypothesis testing we instantiate the problem as that of Sybil detection in on-line social networks (OSNs). Sybil attacks involve one or more attackers creating and introducing several mal-actors (fake identities in on-line social networks), called Sybils, into a complex network. Depending on the nature of the network system, the goal of the mal-actors can be to unlawfully access data, to forge another user's identity and activity, or to influence and disrupt the normal behavior of the system. The second aspect that we look into is that of building resiliency in a large network that consists of several machines that collectively provide a single service to the outside world. Such networks are particularly vulnerable to Sybil attacks. While our Sybil detection algorithms achieve very high levels of accuracy, they cannot guarantee that all Sybils will be detected. Thus, to protect against such "residual" Sybils (that is, those that remain potentially undetected and continue to attack the network services), we propose a novel Moving Target Defense (MTD) paradigm to build resilient networks. The core idea is that for large enterprise level networks, the survivability of the network's mission is more important than the security of one or more of the servers. We develop protocols to re-locate services from server to server in a random way such that before an attacker has an opportunity to target a specific server and disrupt it’s services, the services will migrate to another non-malicious server. The continuity of the service of the large network is thus sustained. We evaluate the effectiveness of our proposed protocols using theoretical analysis, simulations, and experimentation. For the Sybil detection problem we use both synthetic and real-world data sets. We evaluate the algorithms for accuracy of Sybil detection. For the moving target defense protocols we implement a proof-of-concept in the context of access control as a service, and run several large scale simulations. The proof-of- concept demonstrates the effectiveness of the MTD paradigm. We evaluate the computation and communication complexity of the protocols as we scale up to larger and larger networks

    Enabling Disaster Resilient 4G Mobile Communication Networks

    Full text link
    The 4G Long Term Evolution (LTE) is the cellular technology expected to outperform the previous generations and to some extent revolutionize the experience of the users by taking advantage of the most advanced radio access techniques (i.e. OFDMA, SC-FDMA, MIMO). However, the strong dependencies between user equipments (UEs), base stations (eNBs) and the Evolved Packet Core (EPC) limit the flexibility, manageability and resiliency in such networks. In case the communication links between UEs-eNB or eNB-EPC are disrupted, UEs are in fact unable to communicate. In this article, we reshape the 4G mobile network to move towards more virtual and distributed architectures for improving disaster resilience, drastically reducing the dependency between UEs, eNBs and EPC. The contribution of this work is twofold. We firstly present the Flexible Management Entity (FME), a distributed entity which leverages on virtualized EPC functionalities in 4G cellular systems. Second, we introduce a simple and novel device-todevice (D2D) communication scheme allowing the UEs in physical proximity to communicate directly without resorting to the coordination with an eNB.Comment: Submitted to IEEE Communications Magazin
    • …
    corecore