111 research outputs found

    An Efficient V2I Authentication Scheme for VANETs

    Get PDF

    Securing Control Signaling in Mobile IPv6 with Identity-Based Encryption

    Get PDF

    Pairing-based authentication protocol for V2G networks in smart grid

    Full text link
    [EN] Vehicle to Grid (V2G) network is a very important component for Smart Grid (SG), as it offers new services that help the optimization of both supply and demand of energy in the SG network and provide mobile distributed capacity of battery storage for minimizing the dependency of non-renewable energy sources. However, the privacy and anonymity of usersÂż identity, confidentiality of the transmitted data and location of the Electric Vehicle (EV) must be guaranteed. This article proposes a pairing-based authentication protocol that guarantees confidentiality of communications, protects the identities of EV users and prevents attackers from tracking the vehicle. Results from computing and communications performance analyses were better in comparison to other protocols, thus overcoming signaling congestion and reducing bandwidth consumption. The protocol protects EVs from various known attacks and its formal security analysis revealed it achieves the security goals.Roman, LFA.; Gondim, PRL.; Lloret, J. (2019). Pairing-based authentication protocol for V2G networks in smart grid. Ad Hoc Networks. 90:1-16. https://doi.org/10.1016/j.adhoc.2018.08.0151169

    Symbolically Analyzing Security Protocols Using Tamarin

    Get PDF
    During the last three decades, there has been considerable research devoted to the symbolic analysis of security protocols and existing tools have had considerable success both in detecting attacks on protocols and showing their absence. Nevertheless, there is still a large discrepancy between the symbolic models that one specifies on paper and the models that can be effectively analyzed by tools. In this paper, we present the Tamarin prover for the symbolic analysis of security protocols. Tamarin takes as input a security protocol model, specifying the actions taken by the agents running the protocol in different roles (e.g., the protocol initiator, the responder, and the trusted key server), a specification of the adversary, and a specification of the protocol’s desired properties. Tamarin can then be used to automatically construct a proof that the protocol fulfills its specified properties, even when arbitrarily many instances of the protocol’s roles are interleaved in parallel, together with the actions of the adversary

    EFFICIENT AND SCALABLE NETWORK SECURITY PROTOCOLS BASED ON LFSR SEQUENCES

    Get PDF
    The gap between abstract, mathematics-oriented research in cryptography and the engineering approach of designing practical, network security protocols is widening. Network researchers experiment with well-known cryptographic protocols suitable for different network models. On the other hand, researchers inclined toward theory often design cryptographic schemes without considering the practical network constraints. The goal of this dissertation is to address problems in these two challenging areas: building bridges between practical network security protocols and theoretical cryptography. This dissertation presents techniques for building performance sensitive security protocols, using primitives from linear feedback register sequences (LFSR) sequences, for a variety of challenging networking applications. The significant contributions of this thesis are: 1. A common problem faced by large-scale multicast applications, like real-time news feeds, is collecting authenticated feedback from the intended recipients. We design an efficient, scalable, and fault-tolerant technique for combining multiple signed acknowledgments into a single compact one and observe that most signatures (based on the discrete logarithm problem) used in previous protocols do not result in a scalable solution to the problem. 2. We propose a technique to authenticate on-demand source routing protocols in resource-constrained wireless mobile ad-hoc networks. We develop a single-round multisignature that requires no prior cooperation among nodes to construct the multisignature and supports authentication of cached routes. 3. We propose an efficient and scalable aggregate signature, tailored for applications like building efficient certificate chains, authenticating distributed and adaptive content management systems and securing path-vector routing protocols. 4. We observe that blind signatures could form critical building blocks of privacypreserving accountability systems, where an authority needs to vouch for the legitimacy of a message but the ownership of the message should be kept secret from the authority. We propose an efficient blind signature that can serve as a protocol building block for performance sensitive, accountability systems. All special forms digital signatures—aggregate, multi-, and blind signatures—proposed in this dissertation are the first to be constructed using LFSR sequences. Our detailed cost analysis shows that for a desired level of security, the proposed signatures outperformed existing protocols in computation cost, number of communication rounds and storage overhead

    An Efficacious and Secure Registration for Internet Protocol Mobility

    Get PDF
    For the ample development of mobile internet protocol (IP) technology and the recurrent movement of a mobile device, it is necessary for the mobile device to inform their home network where initially registered through an efficient and secured procedure against any sort of attacks. The procedure of registration for IP mobility by the portable system must have a better performance by providing a certain level of security, such as authentication, integrity, replay attack protection, and location privacy. All at once, the extreme security in the registration of IP mobility may cause long registration time, principally for real-time systems. This paper mainly deals with a balanced effort for secure and efficient registration procedure which gives better security and efficiency in terms of registration delay. The proposed work provides an easy and fast registration procedure and lessens the registration delay through the usage of an identity based authenticated key exchange scheme that eliminates expensive pairing operations. The proposed protocol is verified by using AVISPA tool. The performance evaluation reveals that the proposed protocol significantly outperforms the existing protocols in terms of the registration delay.Defence Science Journal, 2013, 63(5), pp.502-507, DOI:http://dx.doi.org/10.14429/dsj.63.400

    A new revocable and re-delegable proxy signature and its application

    Get PDF
    With the popularity of cloud computing and mobile Apps, on-demand services such as on-line music or audio streaming and vehicle booking are widely available nowadays. In order to allow efficient delivery and management of the services, for large-scale on-demand systems, there is usually a hierarchy where the service provider can delegate its service to a top-tier (e.g., countrywide) proxy who can then further delegate the service to lower level (e.g., region-wide) proxies. Secure (re-)delegation and revocation are among the most crucial factors for such systems. In this paper, we investigate the practical solutions for achieving re-delegation and revocation utilizing proxy signature. Although proxy signature has been extensively studied in the literature, no previous solution can achieve both properties. To fill the gap, we introduce the notion of revocable and re-delegable proxy signature that supports efficient revocation and allows a proxy signer to re-delegate its signing right to other proxy signers without the interaction with the original signer. We define the formal security models for this new primitive and present an efficient scheme that can achieve all the security properties. We also present a secure on-line revocable and re-delegate vehicle ordering system (RRVOS) as one of the applications of our proposed scheme
    • …
    corecore