37 research outputs found

    Roadmap on optical security

    Get PDF
    Postprint (author's final draft

    TOWARDS RELIABLE CIRCUMVENTION OF INTERNET CENSORSHIP

    Get PDF
    The Internet plays a crucial role in today\u27s social and political movements by facilitating the free circulation of speech, information, and ideas; democracy and human rights throughout the world critically depend on preserving and bolstering the Internet\u27s openness. Consequently, repressive regimes, totalitarian governments, and corrupt corporations regulate, monitor, and restrict the access to the Internet, which is broadly known as Internet \emph{censorship}. Most countries are improving the internet infrastructures, as a result they can implement more advanced censoring techniques. Also with the advancements in the application of machine learning techniques for network traffic analysis have enabled the more sophisticated Internet censorship. In this thesis, We take a close look at the main pillars of internet censorship, we will introduce new defense and attacks in the internet censorship literature. Internet censorship techniques investigate users’ communications and they can decide to interrupt a connection to prevent a user from communicating with a specific entity. Traffic analysis is one of the main techniques used to infer information from internet communications. One of the major challenges to traffic analysis mechanisms is scaling the techniques to today\u27s exploding volumes of network traffic, i.e., they impose high storage, communications, and computation overheads. We aim at addressing this scalability issue by introducing a new direction for traffic analysis, which we call \emph{compressive traffic analysis}. Moreover, we show that, unfortunately, traffic analysis attacks can be conducted on Anonymity systems with drastically higher accuracies than before by leveraging emerging learning mechanisms. We particularly design a system, called \deepcorr, that outperforms the state-of-the-art by significant margins in correlating network connections. \deepcorr leverages an advanced deep learning architecture to \emph{learn} a flow correlation function tailored to complex networks. Also to be able to analyze the weakness of such approaches we show that an adversary can defeat deep neural network based traffic analysis techniques by applying statistically undetectable \emph{adversarial perturbations} on the patterns of live network traffic. We also design techniques to circumvent internet censorship. Decoy routing is an emerging approach for censorship circumvention in which circumvention is implemented with help from a number of volunteer Internet autonomous systems, called decoy ASes. We propose a new architecture for decoy routing that, by design, is significantly stronger to rerouting attacks compared to \emph{all} previous designs. Unlike previous designs, our new architecture operates decoy routers only on the downstream traffic of the censored users; therefore we call it \emph{downstream-only} decoy routing. As we demonstrate through Internet-scale BGP simulations, downstream-only decoy routing offers significantly stronger resistance to rerouting attacks, which is intuitively because a (censoring) ISP has much less control on the downstream BGP routes of its traffic. Then, we propose to use game theoretic approaches to model the arms races between the censors and the censorship circumvention tools. This will allow us to analyze the effect of different parameters or censoring behaviors on the performance of censorship circumvention tools. We apply our methods on two fundamental problems in internet censorship. Finally, to bring our ideas to practice, we designed a new censorship circumvention tool called \name. \name aims at increasing the collateral damage of censorship by employing a ``mass\u27\u27 of normal Internet users, from both censored and uncensored areas, to serve as circumvention proxies

    Enhanced image encryption scheme with new mapreduce approach for big size images

    Get PDF
    Achieving a secured image encryption (IES) scheme for sensitive and confidential data communications, especially in a Hadoop environment is challenging. An accurate and secure cryptosystem for colour images requires the generation of intricate secret keys that protect the images from diverse attacks. To attain such a goal, this work proposed an improved shuffled confusion-diffusion based colour IES using a hyper-chaotic plain image. First, five different sequences of random numbers were generated. Then, two of the sequences were used to shuffle the image pixels and bits, while the remaining three were used to XOR the values of the image pixels. Performance of the developed IES was evaluated in terms of various measures such as key space size, correlation coefficient, entropy, mean squared error (MSE), peak signal to noise ratio (PSNR) and differential analysis. Values of correlation coefficient (0.000732), entropy (7.9997), PSNR (7.61), and MSE (11258) were determined to be better (against various attacks) compared to current existing techniques. The IES developed in this study was found to have outperformed other comparable cryptosystems. It is thus asserted that the developed IES can be advantageous for encrypting big data sets on parallel machines. Additionally, the developed IES was also implemented on a Hadoop environment using MapReduce to evaluate its performance against known attacks. In this process, the given image was first divided and characterized in a key-value format. Next, the Map function was invoked for every key-value pair by implementing a mapper. The Map function was used to process data splits, represented in the form of key-value pairs in parallel modes without any communication between other map processes. The Map function processed a series of key/value pairs and subsequently generated zero or more key/value pairs. Furthermore, the Map function also divided the input image into partitions before generating the secret key and XOR matrix. The secret key and XOR matrix were exploited to encrypt the image. The Reduce function merged the resultant images from the Map tasks in producing the final image. Furthermore, the value of PSNR did not exceed 7.61 when the developed IES was evaluated against known attacks for both the standard dataset and big data size images. As can be seen, the correlation coefficient value of the developed IES did not exceed 0.000732. As the handling of big data size images is different from that of standard data size images, findings of this study suggest that the developed IES could be most beneficial for big data and big size images

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Novel Privacy Preserving Non-Invasive Sensing-Based Diagnoses of Pneumonia Disease Leveraging Deep Network Model

    Get PDF
    This article presents non-invasive sensing-based diagnoses of pneumonia disease, exploiting a deep learning model to make the technique non-invasive coupled with security preservation. Sensing and securing healthcare and medical images such as X-rays that can be used to diagnose viral diseases such as pneumonia is a challenging task for researchers. In the past few years, patients’ medical records have been shared using various wireless technologies. The wireless transmitted data are prone to attacks, resulting in the misuse of patients’ medical records. Therefore, it is important to secure medical data, which are in the form of images. The proposed work is divided into two sections: in the first section, primary data in the form of images are encrypted using the proposed technique based on chaos and convolution neural network. Furthermore, multiple chaotic maps are incorporated to create a random number generator, and the generated random sequence is used for pixel permutation and substitution. In the second part of the proposed work, a new technique for pneumonia diagnosis using deep learning, in which X-ray images are used as a dataset, is proposed. Several physiological features such as cough, fever, chest pain, flu, low energy, sweating, shaking, chills, shortness of breath, fatigue, loss of appetite, and headache and statistical features such as entropy, correlation, contrast dissimilarity, etc., are extracted from the X-ray images for the pneumonia diagnosis. Moreover, machine learning algorithms such as support vector machines, decision trees, random forests, and naive Bayes are also implemented for the proposed model and compared with the proposed CNN-based model. Furthermore, to improve the CNN-based proposed model, transfer learning and fine tuning are also incorporated. It is found that CNN performs better than other machine learning algorithms as the accuracy of the proposed work when using naive Bayes and CNN is 89% and 97%, respectively, which is also greater than the average accuracy of the existing schemes, which is 90%. Further, K-fold analysis and voting techniques are also incorporated to improve the accuracy of the proposed model. Different metrics such as entropy, correlation, contrast, and energy are used to gauge the performance of the proposed encryption technology, while precision, recall, F1 score, and support are used to evaluate the effectiveness of the proposed machine learning-based model for pneumonia diagnosis. The entropy and correlation of the proposed work are 7.999 and 0.0001, respectively, which reflects that the proposed encryption algorithm offers a higher security of the digital data. Moreover, a detailed comparison with the existing work is also made and reveals that both the proposed models work better than the existing work
    corecore