877 research outputs found

    Computer-aided Melody Note Transcription Using the Tony Software: Accuracy and Efficiency

    Get PDF
    accepteddate-added: 2015-05-24 19:18:46 +0000 date-modified: 2017-12-28 10:36:36 +0000 keywords: Tony, melody, note, transcription, open source software bdsk-url-1: https://code.soundsoftware.ac.uk/attachments/download/1423/tony-paper_preprint.pdfdate-added: 2015-05-24 19:18:46 +0000 date-modified: 2017-12-28 10:36:36 +0000 keywords: Tony, melody, note, transcription, open source software bdsk-url-1: https://code.soundsoftware.ac.uk/attachments/download/1423/tony-paper_preprint.pdfWe present Tony, a software tool for the interactive an- notation of melodies from monophonic audio recordings, and evaluate its usability and the accuracy of its note extraction method. The scientific study of acoustic performances of melodies, whether sung or played, requires the accurate transcription of notes and pitches. To achieve the desired transcription accuracy for a particular application, researchers manually correct results obtained by automatic methods. Tony is an interactive tool directly aimed at making this correction task efficient. It provides (a) state-of-the art algorithms for pitch and note estimation, (b) visual and auditory feedback for easy error-spotting, (c) an intelligent graphical user interface through which the user can rapidly correct estimation errors, (d) extensive export functions enabling further processing in other applications. We show that Tony’s built in automatic note transcription method compares favourably with existing tools. We report how long it takes to annotate recordings on a set of 96 solo vocal recordings and study the effect of piece, the number of edits made and the annotator’s increasing mastery of the software. Tony is Open Source software, with source code and compiled binaries for Windows, Mac OS X and Linux available from https://code.soundsoftware.ac.uk/projects/tony/

    Melodic Transcription of Flamenco Singing from Monophonic and Polyphonic Music Recordings

    Get PDF
    We propose a method for the automatic transcription of flamenco singing from monophonic and polyphonic music recordings. Our transcription system is based on estimating the fundamental frequency (f0) of the singing voice, and follows an iterative strategy for note segmentation and labelling. The generated transcriptions are used in the context of melodic similarity, style classification and pattern detection. In our study, we discuss the difficulties found in transcribing flamenco singing and in evaluating the obtained transcriptions, we analyze the influence of the different steps of the algorithm, and we state the main limitations of our approach and discuss the challenges for future studies

    From heuristics-based to data-driven audio melody extraction

    Get PDF
    The identification of the melody from a music recording is a relatively easy task for humans, but very challenging for computational systems. This task is known as "audio melody extraction", more formally defined as the automatic estimation of the pitch sequence of the melody directly from the audio signal of a polyphonic music recording. This thesis investigates the benefits of exploiting knowledge automatically derived from data for audio melody extraction, by combining digital signal processing and machine learning methods. We extend the scope of melody extraction research by working with a varied dataset and multiple definitions of melody. We first present an overview of the state of the art, and perform an evaluation focused on a novel symphonic music dataset. We then propose melody extraction methods based on a source-filter model and pitch contour characterisation and evaluate them on a wide range of music genres. Finally, we explore novel timbre, tonal and spatial features for contour characterisation, and propose a method for estimating multiple melodic lines. The combination of supervised and unsupervised approaches leads to advancements on melody extraction and shows a promising path for future research and applications

    Interactive Manipulation of Musical Melody in Audio Recordings

    Get PDF
    The objective of this project is to develop an interactive technique to manipulate melody in musical recordings. The proposed methodology is based on the use of melody detection methods combined with the invertible constant Q transform (CQT), which allows a high-quality modification of musical content. This work will consist of several stages, the first of which will focus on monophonic recordings and subsequently we will explore methods to manipulate polyphonic recordings. The long-term objective is to alter a melody of a piece of music in such a way that it may sound similar to another. We have set, as and end goal, to allows users to perform melody manipulation and experiment with their music collection. To achieve this goal, we will devise approaches for high quality polyphonic melody manipulation, using a dataset of melodic content and mixed audio recordings. To ensure the system's usability, a listening test or user-study evaluation of the algorithm will be performed
    corecore