60 research outputs found

    Enhancing Node Cooperation in Mobile Wireless Ad Hoc Networks with Selfish Nodes

    Get PDF
    In Mobile Ad Hoc Networks (MANETs), nodes depend on each other for routing and forwarding packets. However, to save power and other resources, nodes belonging to independent authorities may behave selfishly, and may not be willing to help other nodes. Such selfish behavior poses a real threat to the proper functioning of MANETs. One way to foster node cooperation is to introduce punishment for selfish nodes. Based on neighbor-monitoring techniques, a fully distributed solution to detect, punish, and re-admit selfish nodes, is proposed here. This solution provides nodes the same opportunity to serve/and be served by others. A light-weight solution regarding battery status is also proposed here. This solution requires neighbor monitoring only when necessary, thereby saving nodes battery power. Another effective way to solve the selfish-node problem is to reward nodes for their service according to their cost. To force nodes to show their true cost, truthful protocols are needed. A low overhead truthful routing protocol to find optimal routes is proposed in this thesis. The most prominent feature of this protocol is the reduction of overhead from existing solutions O(n3) to O(n2). A light-weight scalable truthful routing protocol (LSTOP) is further proposed, which finds near-least-cost paths in dense networks. LSTOP reduces overhead to O(n) on average, and O(n2) in worst case scenarios. Multiple path routing protocols are an effective alternative to single path routing protocols. A generic mechanism that can turn any table-driven multipath routing protocol into a truthful one, is outlined here. A truthful multipath routing protocol (TMRP), based on well-known AOMDV protocol, is presented as an example. TMRP incurs an only 2n message overhead for a route discovery, and can also achieve load balancing without compromising truthfulness. To cope with the selfish-node problem in the area of position-based routing, a truthful geographic forwarding (TGF) algorithm is presented. TGF utilizes three auction-based forwarding schemes to stimulate node cooperation. The truthfulness of these schemes is proven, and their performance is evaluated through statistical analysis and simulation studies

    Truthful resource management in wireless ad hoc networks

    Get PDF
    In wireless mobile ad hoc networks (MANETs), cooperation cannot be an im- plicit assumption anymore. Each profit-oriented network node has the intention to be selfish due to limited resource possession. In this dissertation, we investigate the truthful resource management that induces network nodes to reveal true information and stimulate cooperation. We propose the Transmission Power Recursive Auction Mechanism routing pro- tocol (TEAM) and the Truthful Topology Control mechanism (TRUECON) to cope with the selfish intention and achieve resource effciency in a non-cooperative envi- ronment. We prove both are strategy-proof and have some theoretic bounds on the performance. Compared with the existing routing protocols and topology control al- gorithms, TEAM and TRUECON are more effcient when dealing with the selfishness in MANETs. We conduct a study on anonymity enhancement in MANETs by reducing trans- mission power of network nodes. A routing protocol - Whisper is presented. Simu- lation results show that it has desirable properties in terms of anonymity and power effciency

    An Energy-Efficient Proactive Routing Scheme for MANET: Game Theoretical Approach of Forwarding with Selfish Nodes

    Get PDF
    In Mobile Ad-hoc Networks, nodes exchange packets with each other using intermediate nodes as relays. Since nodes in MANETs are battery powered, energy conservation is a crucial issue. Accepting relay all request may not be in the best interest of a node. But if many nodes prefer not to consume energy in relaying packets on behalf of others, the overall performance of routing in network will be influenced. In this paper we address the energy-efficient routing problem in MANETs with selfish nodes. We modeled this problem as a game-theoretic constraint optimization; we defined the utility of each node as a weighted difference between a performance metric and some transmission costs. A motivate mechanism is proposed in order to induce nodes to forwarding cooperation. Each node independently implements the optimal equilibrium strategy under the given constraints. Simulation results by NS3 simulator show that our proposed approach can improve system performance in network lifetime and packet delivery ratio

    Enabling cost aware routing with auctions in wireless ad-hoc networks

    Get PDF
    Battery power is a precious resource in wireless ad-hoc networks, and most routing protocols that have been proposed so far do not generate cost efficient routes. In this thesis, a novel auction-based cost-aware routing scheme, called CARA, is presented. CARA is designed as an extension of the MAC layer, and is shown to improve the cost efficiency of existing ad-hoc routing protocols through dynamic power control, while introducing only minimal additional overhead. The MAC layer at each node is given the capability to run local sealed-bid second-price auctions for the user data packets that need to be transmitted, and to determine any neighbor nodes that reduce the transmission cost to the next hop identified by the network layer. Existing network layer routing protocols are utilized with no changes or impact on their operation. Selforganized networks, where nodes are greedy and selfish, are being supported through the proposed auction-based framework

    A NOVEL METHODOLOGY TO OVERCOME ROUTING MISBEHAVIOR IN MANET USING RETALIATION MODEL

    Get PDF
    ABSTRACT MANET is a cooperative network in which nodes are responsible for forwarding as well as routing. Noncooperation is still a big challenge that certainly degrades the performance and reliability of a MANET. This paper presents a novel methodology to overcome routing misbehavior in MANET using Retaliation Model. In this model node misbehavior is watched and an equivalent misbehavior is given in return. This model employs several parameters such as number of packets forwarded, number of packets received for forwarding, packet forwarding ratio etc. to calculate Grade and Bonus Points. The Grade is used to isolate selfish nodes from the routing paths and the Bonus Points defines the number of packets dropped by an honest node in retaliation over its misconducts. The implementation is done in "GloMoSi

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Game theory for collaboration in future networks

    Get PDF
    Cooperative strategies have the great potential of improving network performance and spectrum utilization in future networking environments. This new paradigm in terms of network management, however, requires a novel design and analysis framework targeting a highly flexible networking solution with a distributed architecture. Game Theory is very suitable for this task, since it is a comprehensive mathematical tool for modeling the highly complex interactions among distributed and intelligent decision makers. In this way, the more convenient management policies for the diverse players (e.g. content providers, cloud providers, home providers, brokers, network providers or users) should be found to optimize the performance of the overall network infrastructure. The authors discuss in this chapter several Game Theory models/concepts that are highly relevant for enabling collaboration among the diverse players, using different ways to incentivize it, namely through pricing or reputation. In addition, the authors highlight several related open problems, such as the lack of proper models for dynamic and incomplete information games in this area.info:eu-repo/semantics/acceptedVersio
    • 

    corecore