5,422 research outputs found

    Skeleton based action recognition using translation-scale invariant image mapping and multi-scale deep cnn

    Full text link
    This paper presents an image classification based approach for skeleton-based video action recognition problem. Firstly, A dataset independent translation-scale invariant image mapping method is proposed, which transformes the skeleton videos to colour images, named skeleton-images. Secondly, A multi-scale deep convolutional neural network (CNN) architecture is proposed which could be built and fine-tuned on the powerful pre-trained CNNs, e.g., AlexNet, VGGNet, ResNet etal.. Even though the skeleton-images are very different from natural images, the fine-tune strategy still works well. At last, we prove that our method could also work well on 2D skeleton video data. We achieve the state-of-the-art results on the popular benchmard datasets e.g. NTU RGB+D, UTD-MHAD, MSRC-12, and G3D. Especially on the largest and challenge NTU RGB+D, UTD-MHAD, and MSRC-12 dataset, our method outperforms other methods by a large margion, which proves the efficacy of the proposed method

    Transforming spatio-temporal self-attention using action embedding for skeleton-based action recognition

    Get PDF
    Over the past few years, skeleton-based action recognition has attracted great success because the skeleton data is immune to illumination variation, view-point variation, background clutter, scaling, and camera motion. However, effective modeling of the latent information of skeleton data is still a challenging problem. Therefore, in this paper, we propose a novel idea of action embedding with a self-attention Transformer network for skeleton-based action recognition. Our proposed technology mainly comprises of two modules as, i) action embedding and ii) self-attention Transformer. The action embedding encodes the relationship between corresponding body joints (e.g., joints of both hands move together for performing clapping action) and thus captures the spatial features of joints. Meanwhile, temporal features and dependencies of body joints are modeled using Transformer architecture. Our method works in a single-stream (end-to-end) fashion, where MLP is used for classification. We carry out an ablation study and evaluate the performance of our model on a small-scale SYSU-3D dataset and large-scale NTU-RGB+D and NTU-RGB+D 120 datasets where the results establish that our method performs better than other state-of-the-art architectures.publishedVersio

    Learning Scene Flow With Skeleton Guidance For 3D Action Recognition

    Full text link
    Among the existing modalities for 3D action recognition, 3D flow has been poorly examined, although conveying rich motion information cues for human actions. Presumably, its susceptibility to noise renders it intractable, thus challenging the learning process within deep models. This work demonstrates the use of 3D flow sequence by a deep spatiotemporal model and further proposes an incremental two-level spatial attention mechanism, guided from skeleton domain, for emphasizing motion features close to the body joint areas and according to their informativeness. Towards this end, an extended deep skeleton model is also introduced to learn the most discriminant action motion dynamics, so as to estimate an informativeness score for each joint. Subsequently, a late fusion scheme is adopted between the two models for learning the high level cross-modal correlations. Experimental results on the currently largest and most challenging dataset NTU RGB+D, demonstrate the effectiveness of the proposed approach, achieving state-of-the-art results.Comment: 18 pages, 3 figures, 3 tables, conferenc
    • …
    corecore