353 research outputs found

    An Attack on the Isomorphisms of Polynomials Problem with One Secret

    Get PDF
    At EUROCRYPT \u2796 J. Patarin introduced the Isomorphisms of Polynomials (IP) problem as a basis of authentication and signature schemes. We describe an attack on the secret key of IP with one secret and demonstrate its efficiency through examples with realistic parameter sizes. To prevent our attack, additional restrictions on the suggested parameters should be imposed

    A general construction for monoid-based knapsack protocols

    Full text link
    We present a generalized version of the knapsack protocol proposed by D. Naccache and J. Stern at the Proceedings of Eurocrypt (1997). Our new framework will allow the construction of other knapsack protocols having similar security features. We will outline a very concrete example of a new protocol using extension fields of a finite field of small characteristic instead of the prime field Z/pZ, but more efficient in terms of computational costs for asymptotically equal information rate and similar key size.Comment: 18 pages, to appear on Advances in Mathematics of Communication

    Developments in multivariate post quantum cryptography.

    Get PDF
    Ever since Shor\u27s algorithm was introduced in 1994, cryptographers have been working to develop cryptosystems that can resist known quantum computer attacks. This push for quantum attack resistant schemes is known as post quantum cryptography. Specifically, my contributions to post quantum cryptography has been to the family of schemes known as Multivariate Public Key Cryptography (MPKC), which is a very attractive candidate for digital signature standardization in the post quantum collective for a wide variety of applications. In this document I will be providing all necessary background to fully understand MPKC and post quantum cryptography as a whole. Then, I will walk through the contributions I provided in my publications relating to differential security proofs for HFEv and HFEv−, key recovery attack for all parameters of HFEm, and my newly proposed multivariate encryption scheme, HFERP

    Proxy Blind Signature using Hyperelliptic Curve Cryptography

    Get PDF
    Blind signature is the concept to ensure anonymity of e-coins. Untracebility and unlinkability are two main properties of real coins and should also be mimicked electronically. A user has to fulll above two properties of blind signature for permission to spend an e-coin. During the last few years, asymmetric cryptosystems based on curve based cryptographiy have become very popular, especially for embedded applications. Elliptic curves(EC) are a special case of hyperelliptic curves (HEC). HEC operand size is only a fraction of the EC operand size. HEC cryptography needs a group order of size at least 2160. In particular, for a curve of genus two eld Fq with p 280 is needeed. Therefore, the eld arithmetic has to be performed using 80-bit long operands. Which is much better than the RSA using 1024 bit key length. The hyperelliptic curve is best suited for the resource constraint environments. It uses lesser key and provides more secure transmisstion of data

    Automated Analysis in Generic Groups

    Get PDF
    This thesis studies automated methods for analyzing hardness assumptions in generic group models, following ideas of symbolic cryptography. We define a broad class of generic and symbolic group models for different settings---symmetric or asymmetric (leveled) k-linear groups - and prove \u27\u27computational soundness\u27\u27 theorems for the symbolic models. Based on this result, we formulate a master theorem that relates the hardness of an assumption to solving problems in polynomial algebra. We systematically analyze these problems identifying different classes of assumptions and obtain decidability and undecidability results. Then, we develop automated procedures for verifying the conditions of our master theorems, and thus the validity of hardness assumptions in generic group models. The concrete outcome is an automated tool, the Generic Group Analyzer, which takes as input the statement of an assumption, and outputs either a proof of its generic hardness or shows an algebraic attack against the assumption. Structure-preserving signatures are signature schemes defined over bilinear groups in which messages, public keys and signatures are group elements, and the verification algorithm consists of evaluating \u27\u27pairing-product equations\u27\u27. Recent work on structure-preserving signatures studies optimality of these schemes in terms of the number of group elements needed in the verification key and the signature, and the number of pairing-product equations in the verification algorithm. While the size of keys and signatures is crucial for many applications, another aspect of performance is the time it takes to verify a signature. The most expensive operation during verification is the computation of pairings. However, the concrete number of pairings is not captured by the number of pairing-product equations considered in earlier work. We consider the question of what is the minimal number of pairing computations needed to verify structure-preserving signatures. We build an automated tool to search for structure-preserving signatures matching a template. Through exhaustive search we conjecture lower bounds for the number of pairings required in the Type~II setting and prove our conjecture to be true. Finally, our tool exhibits examples of structure-preserving signatures matching the lower bounds, which proves tightness of our bounds, as well as improves on previously known structure-preserving signature schemes

    Hard isogeny problems over RSA moduli and groups with infeasible inversion

    Get PDF
    We initiate the study of computational problems on elliptic curve isogeny graphs defined over RSA moduli. We conjecture that several variants of the neighbor-search problem over these graphs are hard, and provide a comprehensive list of cryptanalytic attempts on these problems. Moreover, based on the hardness of these problems, we provide a construction of groups with infeasible inversion, where the underlying groups are the ideal class groups of imaginary quadratic orders. Recall that in a group with infeasible inversion, computing the inverse of a group element is required to be hard, while performing the group operation is easy. Motivated by the potential cryptographic application of building a directed transitive signature scheme, the search for a group with infeasible inversion was initiated in the theses of Hohenberger and Molnar (2003). Later it was also shown to provide a broadcast encryption scheme by Irrer et al. (2004). However, to date the only case of a group with infeasible inversion is implied by the much stronger primitive of self-bilinear map constructed by Yamakawa et al. (2014) based on the hardness of factoring and indistinguishability obfuscation (iO). Our construction gives a candidate without using iO.Comment: Significant revision of the article previously titled "A Candidate Group with Infeasible Inversion" (arXiv:1810.00022v1). Cleared up the constructions by giving toy examples, added "The Parallelogram Attack" (Sec 5.3.2). 54 pages, 8 figure

    AES Side-Channel Countermeasure using Random Tower Field Constructions

    No full text
    International audienceMasking schemes to secure AES implementations against side-channel attacks is a topic of ongoing research. The most sensitive part of the AES is the non-linear SubBytes operation, in particular, the inversion in GF(2^8), the Galois field of 2^8 elements. In hardware implementations, it is well known that the use of the tower of extensions GF(2) ⊂ GF(2^2) ⊂ GF(2^4) ⊂ GF(2^8) leads to a more efficient inversion. We propose to use a random isomorphism instead of a fixed one. Then, we study the effect of this randomization in terms of security and efficiency. Considering the field extension GF(2^8)/GF(2^4), the inverse operation leads to computation of its norm in GF(2^4). Hence, in order to thwart side-channel attack, we manage to spread the values of norms over GF(2^4). Combined with a technique of boolean masking in tower fields, our countermeasure strengthens resistance against first-order differential side-channel attacks

    Isogeny-based post-quantum key exchange protocols

    Get PDF
    The goal of this project is to understand and analyze the supersingular isogeny Diffie Hellman (SIDH), a post-quantum key exchange protocol which security lies on the isogeny-finding problem between supersingular elliptic curves. In order to do so, we first introduce the reader to cryptography focusing on key agreement protocols and motivate the rise of post-quantum cryptography as a necessity with the existence of the model of quantum computation. We review some of the known attacks on the SIDH and finally study some algorithmic aspects to understand how the protocol can be implemented
    corecore