6,089 research outputs found

    Developing an open data portal for the ESA climate change initiative

    Get PDF
    We introduce the rationale for, and architecture of, the European Space Agency Climate Change Initiative (CCI) Open Data Portal (http://cci.esa.int/data/). The Open Data Portal hosts a set of richly diverse datasets – 13 “Essential Climate Variables” – from the CCI programme in a consistent and harmonised form and to provides a single point of access for the (>100 TB) data for broad dissemination to an international user community. These data have been produced by a range of different institutions and vary across both scientific and spatio-temporal characteristics. This heterogeneity of the data together with the range of services to be supported presented significant technical challenges. An iterative development methodology was key to tackling these challenges: the system developed exploits a workflow which takes data that conforms to the CCI data specification, ingests it into a managed archive and uses both manual and automatically generated metadata to support data discovery, browse, and delivery services. It utilises both Earth System Grid Federation (ESGF) data nodes and the Open Geospatial Consortium Catalogue Service for the Web (OGC-CSW) interface, serving data into both the ESGF and the Global Earth Observation System of Systems (GEOSS). A key part of the system is a new vocabulary server, populated with CCI specific terms and relationships which integrates OGC-CSW and ESGF search services together, developed as part of a dialogue between domain scientists and linked data specialists. These services have enabled the development of a unified user interface for graphical search and visualisation – the CCI Open Data Portal Web Presence

    Visualization of and Access to CloudSat Vertical Data through Google Earth

    Get PDF
    Online tools, pioneered by the Google Earth (GE), are facilitating the way in which scientists and general public interact with geospatial data in real three dimensions. However, even in Google Earth, there is no method for depicting vertical geospatial data derived from remote sensing satellites as an orbit curtain seen from above. Here, an effective solution is proposed to automatically render the vertical atmospheric data on Google Earth. The data are first processed through the Giovanni system, then, processed to be 15-second vertical data images. A generalized COLLADA model is devised based on the 15-second vertical data profile. Using the designed COLLADA models and satellite orbit coordinates, a satellite orbit model is designed and implemented in KML format to render the vertical atmospheric data in spatial and temporal ranges vividly. The whole orbit model consists of repeated model slices. The model slices, each representing 15 seconds of vertical data, are placed on the CloudSat orbit based on the size, scale, and angle with the longitude line that are precisely and separately calculated on the fly for each slice according to the CloudSat orbit coordinates. The resulting vertical scientific data can be viewed transparently or opaquely on Google Earth. Not only is the research bridged the science and data with scientists and the general public in the most popular way, but simultaneous visualization and efficient exploration of the relationships among quantitative geospatial data, e.g. comparing the vertical data profiles with MODIS and AIRS precipitation data, becomes possible

    How INSPIREd is NERC?

    Get PDF
    The Natural Environment Research Council (www.nerc.ac.uk) is the UK's main agency for funding and managing research, training and knowledge exchange in the environmental sciences. In 2007 NERC commissioned a consultancy to prepare an INSPIRE baseline and Road Map to enable it to be compliant with the EU INSPIRE Directive well ahead of the deadlines listed in the Directive. This study provided: • A baseline of INSPIRE readiness across NERC with respect to INSPIRE requirements for metadata, discovery, view and download services; • A description of what NERC will need to provide to fully comply with the INSPIRE Directive; • A description of the technology options that are currently envisaged to implement the INSPIRE Directive; • A Road Map to show what NERC must do to meet the INSPIRE Directive; • An estimate of resources required to implement the INSPIRE Directive. This paper outlines the findings of this study

    A linked data approach to publishing complex scientific workflows

    Get PDF
    Past data management practices in many fields of natural science, including climate research, have focused primarily on the final research output - the research publication - with less attention paid to the chain of intermediate data results and their associated metadata, including provenance. Data were often regarded merely as an adjunct to the publication, rather than a scientific resource in their own right. In this paper, we attempt to address the issues of capturing and publishing detailed workflows associated with the climate/research datasets held by the Climatic Research Unit (CRU) at the University of East Anglia. To this end, we present a customisable approach to exposing climate research workflows for the effective re-use of the associated data, through the adoption of linked-data principles, existing widely adopted citation techniques (Digital Object Identifier) and data exchange mechanisms (Open Archives Initiative Object Reuse and Exchange)

    Developing Predictive Molecular Maps of Human Disease through Community-based Modeling

    Get PDF
    The failure of biology to identify the molecular causes of disease has led to disappointment in the rate of development of new medicines. By combining the power of community-based modeling with broad access to large datasets on a platform that promotes reproducible analyses we can work towards more predictive molecular maps that can deliver better therapeutics

    Distributed simulation of city inundation by coupled surface and subsurface porous flow for urban flood decision support system

    Get PDF
    We present a decision support system for flood early warning and disaster management. It includes the models for data-driven meteorological predictions, for simulation of atmospheric pressure, wind, long sea waves and seiches; a module for optimization of flood barrier gates operation; models for stability assessment of levees and embankments, for simulation of city inundation dynamics and citizens evacuation scenarios. The novelty of this paper is a coupled distributed simulation of surface and subsurface flows that can predict inundation of low-lying inland zones far from the submerged waterfront areas, as observed in St. Petersburg city during the floods. All the models are wrapped as software services in the CLAVIRE platform for urgent computing, which provides workflow management and resource orchestration.Comment: Pre-print submitted to the 2013 International Conference on Computational Scienc

    The evolution of bits and bottlenecks in a scientific workflow trying to keep up with technology: Accelerating 4D image segmentation applied to nasa data

    Get PDF
    In 2016, a team of earth scientists directly engaged a team of computer scientists to identify cyberinfrastructure (CI) approaches that would speed up an earth science workflow. This paper describes the evolution of that workflow as the two teams bridged CI and an image segmentation algorithm to do large scale earth science research. The Pacific Research Platform (PRP) and The Cognitive Hardware and Software Ecosystem Community Infrastructure (CHASE-CI) resources were used to significantly decreased the earth science workflow's wall-clock time from 19.5 days to 53 minutes. The improvement in wall-clock time comes from the use of network appliances, improved image segmentation, deployment of a containerized workflow, and the increase in CI experience and training for the earth scientists. This paper presents a description of the evolving innovations used to improve the workflow, bottlenecks identified within each workflow version, and improvements made within each version of the workflow, over a three-year time period
    • …
    corecore