52 research outputs found

    Classification of EEG by a multi-layer reservoir neural network based on asynchronous cellular automaton neurons

    Get PDF
    In this paper, a multi-layer reservoir neural network is designed using an asynchronous cellular automaton neuron model. Furthermore, a learning method of the network based on the simulated annealing is proposed. It is shown that the network with reservoir layers can classify a set of several EEG. In addition, the classification performance of networks with various configurations were compared, and it is shown the best performing network is a two-layer reservoir neural network

    Novel design methods of central nervous system of C. elegans and olfactory bulb model of mammal based on sequential logic and numerical integration

    Get PDF
    This study proposes a novel design method of a neuromorphic electronic circuit: design of a neuromorphic circuit based on appropriately selected hybrid dynamics of synchronous sequential logic, asynchronous sequential logic, and numerical integration. Based on the proposed design method, a novel central nervous system model of C. elegans, and an olfactory bulb model are presented. It is then shown that the presented models can realize typical responses of a conventional central nervous system model of C. elegans, and the observation of chaos in the olfactory bulb. Furthermore, the presented models are implemented by a field programmable gate array and the presented model of C.elegans is used to control a prototype robot of C. elegans body. Then, experiments validate that the presented central nervous system model enables the body robot to reproduce typical chemotaxis behaviors of the conventional C. elegans model. In addition, comparisons show that the presented model consumes fewer circuit elements and lower power compared to various central nervous system models of C. elegans based on synchronous sequential logic, asynchronous sequential logic, and numerical integration

    On microelectronic self-learning cognitive chip systems

    Get PDF
    After a brief review of machine learning techniques and applications, this Ph.D. thesis examines several approaches for implementing machine learning architectures and algorithms into hardware within our laboratory. From this interdisciplinary background support, we have motivations for novel approaches that we intend to follow as an objective of innovative hardware implementations of dynamically self-reconfigurable logic for enhanced self-adaptive, self-(re)organizing and eventually self-assembling machine learning systems, while developing this new particular area of research. And after reviewing some relevant background of robotic control methods followed by most recent advanced cognitive controllers, this Ph.D. thesis suggests that amongst many well-known ways of designing operational technologies, the design methodologies of those leading-edge high-tech devices such as cognitive chips that may well lead to intelligent machines exhibiting conscious phenomena should crucially be restricted to extremely well defined constraints. Roboticists also need those as specifications to help decide upfront on otherwise infinitely free hardware/software design details. In addition and most importantly, we propose these specifications as methodological guidelines tightly related to ethics and the nowadays well-identified workings of the human body and of its psyche

    Digital control networks for virtual creatures

    Get PDF
    Robot control systems evolved with genetic algorithms traditionally take the form of floating-point neural network models. This thesis proposes that digital control systems, such as quantised neural networks and logical networks, may also be used for the task of robot control. The inspiration for this is the observation that the dynamics of discrete networks may contain cyclic attractors which generate rhythmic behaviour, and that rhythmic behaviour underlies the central pattern generators which drive lowlevel motor activity in the biological world. To investigate this a series of experiments were carried out in a simulated physically realistic 3D world. The performance of evolved controllers was evaluated on two well known control tasks—pole balancing, and locomotion of evolved morphologies. The performance of evolved digital controllers was compared to evolved floating-point neural networks. The results show that the digital implementations are competitive with floating-point designs on both of the benchmark problems. In addition, the first reported evolution from scratch of a biped walker is presented, demonstrating that when all parameters are left open to evolutionary optimisation complex behaviour can result from simple components

    Neural avalanches at the edge-of-chaos?

    Full text link
    Does the brain operate at criticality, to optimize neural computation? Literature uses different fingerprints of criticality in neural networks, leaving the relationship between them mostly unclear. Here, we compare two specific signatures of criticality, and ask whether they refer to observables at the same critical point, or to two differing phase transitions. Using a recurrent spiking neural network, we demonstrate that avalanche criticality does not necessarily lie at edge-of-chaos

    ERGODIC CELLULAR AUTOMATON NEURON MODEL FOR A VIRTUAL CLINICAL TRIAL OF NEURAL PROSTHESIS

    Get PDF
    A novel cellular automaton neuron model and its cellular differentiation method are presented. It is shown that the differentiation method enables the neuron model to reproduce typical nonlinear responses of a given neuron model. Then a virtual clinical trial of neural prosthesis is executed, i.e., a target neuron model in a network composed of biologically plausible differential equation neuron models is replaced with the presented neuron model that is differentiated to reproduce the target neuron model. The presented neuron model is implemented in a field programmable gate array and the virtual clinical trial is validated by experiments. The results show the presented neuron model is much more hardware-efficient compared to a simplified differential equation neuron model

    Frontiers of Membrane Computing: Open Problems and Research Topics

    Get PDF
    This is a list of open problems and research topics collected after the Twelfth Conference on Membrane Computing, CMC 2012 (Fontainebleau, France (23 - 26 August 2011), meant initially to be a working material for Tenth Brainstorming Week on Membrane Computing, Sevilla, Spain (January 30 - February 3, 2012). The result was circulated in several versions before the brainstorming and then modified according to the discussions held in Sevilla and according to the progresses made during the meeting. In the present form, the list gives an image about key research directions currently active in membrane computing

    A Novel Ergodic Discrete Difference Equation Cochlear Model

    Get PDF
    In this paper, a novel hardware-efficient electronic circuit cochlear model, the dynamics of which are described by an ergodic cellular automaton, is presented. Based on theoretical and numerical analyses, a parameter setting method so that the presented model properly works as a cochlear model is proposed. It is shown that the presented cochlear model designed by the proposed parameter setting method can reproduce typical nonlinear sound processing functions of mammalian cochleae such as nonlinear compression, two-tone suppression and two-tone distortion products. Furthermore, the presented model is implemented by a field programmable gate array (FPGA) and its operations are validated by experiments. It is shown that the presented model is much more hardware-efficient (i.e., consumes many fewer circuits elements) compared to some other electronic circuit cochlear models

    Complex and Adaptive Dynamical Systems: A Primer

    Full text link
    An thorough introduction is given at an introductory level to the field of quantitative complex system science, with special emphasis on emergence in dynamical systems based on network topologies. Subjects treated include graph theory and small-world networks, a generic introduction to the concepts of dynamical system theory, random Boolean networks, cellular automata and self-organized criticality, the statistical modeling of Darwinian evolution, synchronization phenomena and an introduction to the theory of cognitive systems. It inludes chapter on Graph Theory and Small-World Networks, Chaos, Bifurcations and Diffusion, Complexity and Information Theory, Random Boolean Networks, Cellular Automata and Self-Organized Criticality, Darwinian evolution, Hypercycles and Game Theory, Synchronization Phenomena and Elements of Cognitive System Theory.Comment: unformatted version of the textbook; published in Springer, Complexity Series (2008, second edition 2010

    Dynamically reconfigurable bio-inspired hardware

    Get PDF
    During the last several years, reconfigurable computing devices have experienced an impressive development in their resource availability, speed, and configurability. Currently, commercial FPGAs offer the possibility of self-reconfiguring by partially modifying their configuration bitstream, providing high architectural flexibility, while guaranteeing high performance. These configurability features have received special interest from computer architects: one can find several reconfigurable coprocessor architectures for cryptographic algorithms, image processing, automotive applications, and different general purpose functions. On the other hand we have bio-inspired hardware, a large research field taking inspiration from living beings in order to design hardware systems, which includes diverse topics: evolvable hardware, neural hardware, cellular automata, and fuzzy hardware, among others. Living beings are well known for their high adaptability to environmental changes, featuring very flexible adaptations at several levels. Bio-inspired hardware systems require such flexibility to be provided by the hardware platform on which the system is implemented. In general, bio-inspired hardware has been implemented on both custom and commercial hardware platforms. These custom platforms are specifically designed for supporting bio-inspired hardware systems, typically featuring special cellular architectures and enhanced reconfigurability capabilities; an example is their partial and dynamic reconfigurability. These aspects are very well appreciated for providing the performance and the high architectural flexibility required by bio-inspired systems. However, the availability and the very high costs of such custom devices make them only accessible to a very few research groups. Even though some commercial FPGAs provide enhanced reconfigurability features such as partial and dynamic reconfiguration, their utilization is still in its early stages and they are not well supported by FPGA vendors, thus making their use difficult to include in existing bio-inspired systems. In this thesis, I present a set of architectures, techniques, and methodologies for benefiting from the configurability advantages of current commercial FPGAs in the design of bio-inspired hardware systems. Among the presented architectures there are neural networks, spiking neuron models, fuzzy systems, cellular automata and random boolean networks. For these architectures, I propose several adaptation techniques for parametric and topological adaptation, such as hebbian learning, evolutionary and co-evolutionary algorithms, and particle swarm optimization. Finally, as case study I consider the implementation of bio-inspired hardware systems in two platforms: YaMoR (Yet another Modular Robot) and ROPES (Reconfigurable Object for Pervasive Systems); the development of both platforms having been co-supervised in the framework of this thesis
    corecore