83 research outputs found

    Direct Time of Flight Single Photon Imaging

    Get PDF

    High speed event-based visual processing in the presence of noise

    Get PDF
    Standard machine vision approaches are challenged in applications where large amounts of noisy temporal data must be processed in real-time. This work aims to develop neuromorphic event-based processing systems for such challenging, high-noise environments. The novel event-based application-focused algorithms developed are primarily designed for implementation in digital neuromorphic hardware with a focus on noise robustness, ease of implementation, operationally useful ancillary signals and processing speed in embedded systems

    Optimized PET module for both pixelated and monolithic scintillator crystals

    Get PDF
    [eng] Time-of-Flight Positron Emission Tomography (TOF-PET) scanners demand fast and efficient photo-sensors and scintillators coupled to fast readout electronics. Nowadays, there are two main configurations regarding the scintillator crystal geometry: the segmented or pixelated and the monolithic approach. Depending on the cost, spatial resolution and time requirements of the PET module, one can choose between one or another. The pixelated crystal is the most extensive configuration on TOF-PET scanners as the coincidence time resolution is better compared to the monolithic. On the contrary, monolithic scintillator crystals for Time-of-Flight Positron Emission Tomography (ToF-PET) are increasing in popularity this last years due to their performance potential and price in front of the commonly used segmented crystals. On one hand, monolithic blocks allows to determine 3D information of the gamma-ray interaction inside the crystal, which enables the possibility to correct the parallax error (radial astigmatism) at off-center positions within a PET scanner, resulting in an improvement of the spatial resolution of the device. On the other hand, due to the simplicity during the crystal manufacturing process as well as for the detector design, the price is reduced compared to a regular pixelated detector. The thesis starts with the use of HRFlexToT, an ASIC developed in this group, as the readout electronics for measurements with single pixelated crystals coupled to different SiPMs. These measurements show an energy linearity error of 3% and an energy resolution below 10% of the 511 keV photopeak. Single Photon Time Resolution (SPTR) measurements performed using an FBK SiPM NUV-HD (4 mm x 4 mm pixel size) and a Hamamatsu SiPM S13360-3050CS gave a 141 ps and 167 ps FWHM respectively. Coincidence Time Resolution (CTR) measurements with small cross-section pixelated crystals (LFS crystal, 3 m x 3 mm x 20 mm ) coupled to a single Hamamatsu SiPM S13360-3050CS provides a CTR of 180 ps FWHM. Shorter crystals (LSO:Ce Ca 0.4%) coupled to a Hamamatsu S13360-3050CS SiPM or FBK-NUVHD yields a CTR of 117 ps and 119 ps respectively. Then, the results with different monolithic crystals and SiPM sensors using HRFlexToT ASIC will be presented. A Lutetium Fine Silicate (LFS) of 25 mm x 25 mm x 20 mm, a small LSO:Ce Ca 0.2% of 8 mm x 8 mm x 5 mm and a Lutetium-Yttrium Oxyorthosilicate (LYSO) of 25 mm x 25 mm x 10 mm has been experimentally tested. After subtracting the TDC contribution (82 ps FWHM), a coincidence time resolution of 244 ps FWHM for the small LFS crystal and 333 ps FWHM for the largest LFS one is reported. Additionally, a novel time calibration correction method for CTR improvement that involves a pico-second pulsed laser will be detailed. In the last part of the dissertation, a new developed simulation framework that will enable the cross-optimization of the whole PET system will be explained. It takes into consideration the photon physics interaction in the scintillator crystal, the sensor response (sensor size, pixel pitch, dead area, capacitance) and the readout electronics behavior (input impedance, noise, bandwidth, summation). This framework has allowed us to study a new promising approach that will help reducing the CTR parameter by segmenting a large area SiPM into "m" smaller SiPMs and then summing them to recover all the signal spread along these smaller sensors. A 15% improvement on time resolution is expected by segmenting a 4 mm x 4 mm single sensor into 9 sensors of 1.3 mm x 1.3 mm with respect to the case where no segmentation is applied.[cat] Aquesta tesi tenia com a objectiu la fabricació i avaluació d'un prototip per a detecció de fotons gamma en aplicació per imatge mèdica, més concretament en Tomografia per Emissió de Positrons amb mesura de temps de vol (TOF-PET). L'avaluació del mòdul va començar fent una caracterització completa del chip (ASIC) anomenat HRFlexToT, una versió nova i millorada de l'antic chip FlexToT, desenvolupat i fabricat pel grup de la Unitat Tecnològica del ICC de la Universitat de Barcelona. Aquesta avaluació inicial del chip compren des de la comprovació de les funcionalitats bàsiques fins a la generació d'un test automàtic per generar les gràfiques de linealitat corresponents durant el test elèctric. Un cop donat per bo, es va muntar en una placa demostrada, també ideada per l'equip d'enginyers del grup, i ja quedava llesta per realitzar les mesures pertinents. Tot seguit, es varen realitzar les mesures òptiques, que incloïa mesures de Singe Photon Time Resolution (SPTR) i de Coincidence Time Resolution (CTR). Aquest valors actuen com a figures de mèrit a l'hora de comparar les prestacions amb d'altres ASICs competidors del HRFlexToT. Es van obtenir valors de 60 ps de resposta pel que respecta al SPTR i de 115 ps de CTR en cristalls segmentats, una millora entorn del 20-30% respecte a la versió predecessora del chip. Aquests valors mostren ser el límit de l'estat de l'art actual i amb aquesta idea es van començar a fer altres mesures, en aquest cas amb cristall monolítics, blocs grans llegits per diversos fotosensors de les empreses Hamamatsu i FBK. Per altra banda, es va provar el funcionament del ASIC en configuració anomenada monolítica, on el cristall centellejador s'utilitza en blocs grans en coptes d’emprar cristalls segmentats, això abarateix el cost total del detector. Aquesta configuració degrada les propietats de CTR, un paràmetre crític a l'hora de tenir un producte bo i eficient. S’han obtingut mesures de 250 ps de CTR amb aquesta configuració, d’on es pot dir que l’HRFlexToT es trobar a l’estat de l’art de la tecnologia electrònica dedicada a TOF-PET amb cristalls segmentats i monolítics. Finalment, es va desenvolupar una nova eina simulació que consisteix en un sistema híbrid entre un simulador físic i un electrònic per tal de tenir una idea del comportament complet del mòdul detector. Una solució que ningú havia provat fins ara o que no es pot trobar en la literatura

    LinoSPAD maatrikstajuril põhineva kolmemõõtmelise arvutusliku kummituskuva teaduskatse kavand

    Get PDF
    Automatiseerimise ja robootika suurenevad nõudmised seireseadmetele on tinginud kõrglahutusega kolmemõõtmelise kuva kiire arengu. Arvutuslikul kummituskuval põhinev kolmemõõtmeline (3D) kuva on arenev tehnoloogia, millel on harjumuspärase maatrikssensoritepõhise 3D välkkuvaga (ash imaging) võrreldes suurem lahutusvõime. Paraku iseloomustab arvutusliku kummituskuva seadmeid tavaliselt kompromiss kujutise saamiseks kuluva aja ning saadava kujutise lahutusvõime vahel. Magistritöös esitatakse LinoSPAD maatrikstajuril põhineva teaduseksperimendi kavand uudse valguse lennuaja mõõtmisel põhineva 3D arvutusliku kummituskuva meetodi katsetamiseks. Vastupidiselt ühepikslilist valgusdetektorit rakendavale arvutuslikule kummituskuvale, kus üht pikslit kasutatakse terve stseeni pildistamiseks, jaotatakse esitatud meetodis tipptehnoloogilist prototüüp-maatrikstajuritit kasutades pildistatav stseen osadeks nii, et iga maatrikstajuri üksiku piksli vaateväli jälgib vaid osa stseenist. See lahendus lühendab märkimisväärselt kujutise saamiseks kuluvat mõõteaega, kuid ei vähenda saadava kujutise lahutusvõimet. Teaduskatse kavandi koostamisel analüüsiti nõudeid süsteemi valgusallikale ning ruumilisele valgusväljamodulaatorile ja uuriti LinoSPAD maatrikstajuri tööpõhimõtet. Lisaks täiendati kavandit footonihulgaarvutuste, haavelmüra ning üksikfootondetektori surnud aja simulatsioonidega ja esitatava süsteemikavandi ajastusahela katsetamisega. Esitatud süsteemi ranged piirangud ajastamissignaalidele nõuavad piisava sügavuslahutuse saavutamiseks katse elluviimisel optimeerida ajastamissignaale vahendava elektroonika parameetreid. Sellegipoolest kinnitavad tehtud katsed ning simulatsioonid teaduseksperimendi kavandi rakendatavust uudse 3D arvutusliku kummituskuva meetodi katsetamiseks.High-resolution 3D-imaging is a rapidly developing field driven by the increasing sensing requirements of automation and robotics. Computational ghost imaging based 3Dimaging is an emerging technology, offering increased spatial resolution when compared to conventional 3D ash imaging systems. Usually, however, computational ghost imaging systems are characterized by their compromise between image acquisition times and image spatial resolution. This thesis presents a LinoSPAD line sensor based experiment design for a novel time of flight based 3D computational ghost imaging method. Contrary to single-pixel computational ghost imaging, where a single-pixel detector is used for imaging the entire scene, the proposed method utilizes a state-of-the-art prototype sensor array to divide the scene to be imaged between the detector's individual pixels' fields of view. This approach significantly reduces the system's image acquisition times while avoiding a reduction in its spatial resolution. Prior to developing a final design, the requirements for the light source and the spatial light modulator and the capabilities of the LinoSPAD sensor were analyzed. Furthermore, the design was complemented with photon budget calculations, shot noise and detector dead time simulations, and preliminary setup tests focusing on the triggering scheme of the design. The system's stringent timing requirements require the optimizing the parameters of triggering electronics in the experiment's implementation. Regardless, conducted tests and simulations confirm the feasibility of the experiment design for the novel 3D computational ghost imaging approach

    Miniature high dynamic range time-resolved CMOS SPAD image sensors

    Get PDF
    Since their integration in complementary metal oxide (CMOS) semiconductor technology in 2003, single photon avalanche diodes (SPADs) have inspired a new era of low cost high integration quantum-level image sensors. Their unique feature of discerning single photon detections, their ability to retain temporal information on every collected photon and their amenability to high speed image sensor architectures makes them prime candidates for low light and time-resolved applications. From the biomedical field of fluorescence lifetime imaging microscopy (FLIM) to extreme physical phenomena such as quantum entanglement, all the way to time of flight (ToF) consumer applications such as gesture recognition and more recently automotive light detection and ranging (LIDAR), huge steps in detector and sensor architectures have been made to address the design challenges of pixel sensitivity and functionality trade-off, scalability and handling of large data rates. The goal of this research is to explore the hypothesis that given the state of the art CMOS nodes and fabrication technologies, it is possible to design miniature SPAD image sensors for time-resolved applications with a small pixel pitch while maintaining both sensitivity and built -in functionality. Three key approaches are pursued to that purpose: leveraging the innate area reduction of logic gates and finer design rules of advanced CMOS nodes to balance the pixel’s fill factor and processing capability, smarter pixel designs with configurable functionality and novel system architectures that lift the processing burden off the pixel array and mediate data flow. Two pathfinder SPAD image sensors were designed and fabricated: a 96 × 40 planar front side illuminated (FSI) sensor with 66% fill factor at 8.25μm pixel pitch in an industrialised 40nm process and a 128 × 120 3D-stacked backside illuminated (BSI) sensor with 45% fill factor at 7.83μm pixel pitch. Both designs rely on a digital, configurable, 12-bit ripple counter pixel allowing for time-gated shot noise limited photon counting. The FSI sensor was operated as a quanta image sensor (QIS) achieving an extended dynamic range in excess of 100dB, utilising triple exposure windows and in-pixel data compression which reduces data rates by a factor of 3.75×. The stacked sensor is the first demonstration of a wafer scale SPAD imaging array with a 1-to-1 hybrid bond connection. Characterisation results of the detector and sensor performance are presented. Two other time-resolved 3D-stacked BSI SPAD image sensor architectures are proposed. The first is a fully integrated 5-wire interface system on chip (SoC), with built-in power management and off-focal plane data processing and storage for high dynamic range as well as autonomous video rate operation. Preliminary images and bring-up results of the fabricated 2mm² sensor are shown. The second is a highly configurable design capable of simultaneous multi-bit oversampled imaging and programmable region of interest (ROI) time correlated single photon counting (TCSPC) with on-chip histogram generation. The 6.48μm pitch array has been submitted for fabrication. In-depth design details of both architectures are discussed

    Algoritmy pro multi-modální radiografii s novými zobrazovacími detektory.

    Get PDF
    Zobrazování v medicíně je technika, která nám umožňuje bez operativních zásahů vizua- lizovat vnitřní struktury lidského těla, abychom mohli diagnostikovat nemoci. Umožňuje nám taky monitorování fyzikálních procesů a funkcí různých orgánů v těle. Obor medi- cínského zobrazování obsahuje širokou škálu metod založených na různých fyzikálních principech. Součástí tohoto oboru jsou i metody používající ionizující záření. Kvalita na- měřených snímků silně závisi na použitých zobrazovacích detektorech. Existuje celá řada různých typů detektorů, od čistě analogových (filmy) až po plně digitální detektory jako jsou flat panely, které jsou v dnešní době nejrozšířenější. Novější typy dektorů využívají technologie počítání fotonů a nejmodernější experimentální detektory jako například Me- dipix jsou schopné detekovat a analyzovat jednotlivé fotony. Tato práce studuje vlastnoti, parametery a možné aplikační využití nejvnovejšího detek- toru Timepix3 z rodiny detektorů Medipix v různých zobrazovacích modalitách. Nejprve byl vyvinut nový vyčítací hardware a akviziční software společně s novými kalibračními a korekčními metodami. Poté byly postupně prozkoumány různé módy Timepix3 detek- toru: velmi rychlá spektrální radiografie, která demonstruje velmi rychlé měření "barev- ných"rentgenových obrázků; jednofotovná...Medical imaging is a technique that allows us to visualize non surgically the internal structure of the human body in order to diagnose or treat medical conditions. It permits also monitoring of physical processes or functions of different organs inside the body. The medical imaging encompasses wide range of techniques based on different physical prin- ciples, including techniques using ionizing radiation. The quality of the images depends significantly on the quality of the used imaging detectors. There are many types of the detectors, from old analog devices (e.g. films) to fully digital detectors such as flat panels, that are the most widely used today. The newer technology is being developed and the techniques such as photon counting explored. However, the state of the art technology is the single photon counting, where the experimental detectors such as Medipix are able to count and process each individual photon. This works studies the properties, features and applications of the newest detector from the Medipix family Timepix3 in different imaging modalities. Firstly, a design of a new hardware readout interface for Timepix3 is presented together with data acquisition software and new analysis and calibration algorithms. Then, different applications of Timepix3 detector were explored: very...Ústav patologické fyziologie 1. LF UKInstitute of Pathological Physiology First Faculty of Medicine Charles University1. lékařská fakultaFirst Faculty of Medicin

    Evaluation of single photon avalanche diode arrays for imaging fluorescence correlation spectroscopy : FPGA-based data readout and fast correlation analysis on CPUs, GPUs and FPGAs

    Get PDF
    The metabolism of all living organisms, and specifically also of their smallest constituents, the cell, is based on chemical reactions. A key factor determining the speed of these processes is transport of reactants, energy, and information within the and between the cells of an organism. It has been shown that the relevant transport processes also depend on the spatial organization of the cells. Such transport processes are typically investigated using fluorescence correlation spectroscopy (FCS) in combination with fluorescent labeling of the molecules of interest. In FCS, one observes the fluctuating fluorescence signal from a femtoliter-sized sub-volume within the sample (e.g. a cell). The variations in the intensity arise from the particles moving in and out of this sub-volume. By means of an autocorrelation analysis of the intensity signal, conclusion can be drawn regarding the concentration and the mobility parameters, such as the diffusion coefficient. Typically, one uses the laser focus of a confocal microscope for FCS measurements. But with this microscopy technique, FCS is limited to a single spot a every time. In order to conduct parallel multi-spot measurements, i.e. to create diffusion maps, FCS can be combined with the lightsheet based selective plane illumination microscopy (SPIM). This recent widefield microscopy technique allows observing a small plane of a sample (1-3um thick), which can be positioned arbitrarily. Usually, FCS on a SPIM is done using fast electron-multiplying charge-coupled device (EMCCD) cameras, which offer a limited temporal resolution (500us). Such a temporal resolution only allows measuring the motion of intermediately sized particles within a cell reliably. The limited temporal resolution renders the detection of even smaller molecules impossible. In this thesis, arrays of single photon avalanche diodes (SPADs) were used as detectors. Although SPAD-based image sensors still lack in sensitivity, they provide a significantly better temporal resolution (1-10us for full frames) that is not achievable with sensitive cameras and seem to be the ideal sensors for SPIM-FCS. In the course of this work, two recent SPAD arrays (developed in the groups of Prof. Edoardo Charbon, TU Delft, the Netherlands, and EPFL, Switzerland) were extensively characterized with regards to their suitability for SPIM-FCS. The evaluated SPAD arrays comprise 32x32 and 512x128 pixels and allow for frame rates of up to 300000 or 150000 frames per second, respectively. With these specifications, the latter array is one of the largest and fastest sensors that is currently available. During full-frame readout, it delivers a data rate of up to 1.2 GiB/s. For both arrays, suitable readout-hardware-based on field programmable gate arrays (FPGAs) was designed. To cope with the high data rate and to allow real-time correlation analysis, correlation algorithms were implemented and characterized on the three major high performance computing platforms, namely FPGAs, CPUs, and graphics processing units (GPUs). Of all three platforms, the GPU performed best in terms of correlation analysis, and a speed of 2.6 over real time was achieved for the larger SPAD array. Beside the lack in sensitivity, which could be accounted for by microlenses, a major drawback of the evaluated SPAD arrays was their afterpulsing. It appeared that the temporal structure superimposed the signal of the diffusion. Thus, extracting diffusion properties from the autocorrelation analysis only proved impossible. By additionally performing a spatial cross-correlation analysis such influences could be significantly minimized. Furthermore, this approach allowed for the determination of absolute diffusion coefficients without prior calibration. With that, spatially resolved measurements of fluorescent proteins in living cells could be conducted successfully

    Photodetectors

    Get PDF
    In this book some recent advances in development of photodetectors and photodetection systems for specific applications are included. In the first section of the book nine different types of photodetectors and their characteristics are presented. Next, some theoretical aspects and simulations are discussed. The last eight chapters are devoted to the development of photodetection systems for imaging, particle size analysis, transfers of time, measurement of vibrations, magnetic field, polarization of light, and particle energy. The book is addressed to students, engineers, and researchers working in the field of photonics and advanced technologies

    Pixel design and characterization of high-performance tandem OLED microdisplays

    Get PDF
    Organic Light-Emitting Diode (OLED) microdisplays - miniature Electronic Displays comprising a sandwich of organic light emitting diode over a substrate containing CMOS circuits designed to function as an active matrix backplane – were first reported in the 1990s and, since then, have advanced to the mainstream. The smaller dimensions and higher performance of CMOS circuit elements compared to that of equivalent thin film transistors implemented in technologies for large OLED display panels offer a distinct advantage for ultra-miniature display screens. Conventional OLED has suffered from lifetime degradation at high brightness and high current density. Recently, tandem-structure OLED devices have been developed using charge generation layers to implement two or more OLED units in a single stack. They can achieve higher brightness at a given current density. The combination of emissive-nature, fast response, medium to high luminance, low power consumption and appropriate lifetime makes OLED a favoured candidate for near-to-eye systems. However, it is also challenging to evaluate the pixel level optical response of OLED microdisplays as the pixel pitch is extremely small and relative low light output per pixel. Advanced CMOS Single Photon Avalanche Diode (SPAD) technology is progressing rapidly and is being deployed in a wide range of applications. It is also suggested as a replacement for photomultiplier tube (PMT) for photonic experiments that require high sensitivity. CMOS SPAD is a potential tool for better and cheaper display optical characterizations. In order to incorporate the novel tandem structure OLED within the computer aided design (CAD) flow of microdisplays, we have developed an equivalent circuit model that accurately describes the tandem OLED electrical characteristics. Specifically, new analogue pulse width modulation (PWM) pixel circuit designs have been implemented and fabricated in small arrays for test and characterization purposes. We report on the design and characterization of these novel pixel drive circuits for OLED microdisplays. Our drive circuits are designed to allow a state-of-the-art sub-pixel pitch of around 5 μm and implemented in 130 nm CMOS. A performance comparison with a previous published analogue PWM pixel is reported. Moreover, we have employed CMOS SPAD sensors to perform detailed optical measurements on the OLED microdisplay pixels at very high sampling rate (50 kHz, 10 μs exposure), very low light level (2×10-4 cd/m2) and over a very wide dynamic range (83 dB) of luminance. This offers a clear demonstration of the potential of the CMOS SPAD technology to reveal hitherto obscure details of the optical characteristics of individual and groups of OLED pixels and thereby in display metrology in general. In summary, there are three key contributions to knowledge reported in this thesis. The first is a new equivalent circuit model specifically for tandem structure OLED. The model is verified to provide accurately illustrate the electrical response of the tandem OLED with different materials. The second is the novel analogue PWM pixel achieve a 5μm sub-pixel pitch with 2.4 % pixel-to-pixel variation. The third is the new application and successful characterization experiment of OLED microdisplay pixels with SPAD sensors. It revealed the OLED pixel overshoot behaviour with a QIS SPAD sensor
    corecore