131 research outputs found

    Strong Equivalence Relations for Iterated Models

    Full text link
    The Iterated Immediate Snapshot model (IIS), due to its elegant geometrical representation, has become standard for applying topological reasoning to distributed computing. Its modular structure makes it easier to analyze than the more realistic (non-iterated) read-write Atomic-Snapshot memory model (AS). It is known that AS and IIS are equivalent with respect to \emph{wait-free task} computability: a distributed task is solvable in AS if and only if it solvable in IIS. We observe, however, that this equivalence is not sufficient in order to explore solvability of tasks in \emph{sub-models} of AS (i.e. proper subsets of its runs) or computability of \emph{long-lived} objects, and a stronger equivalence relation is needed. In this paper, we consider \emph{adversarial} sub-models of AS and IIS specified by the sets of processes that can be \emph{correct} in a model run. We show that AS and IIS are equivalent in a strong way: a (possibly long-lived) object is implementable in AS under a given adversary if and only if it is implementable in IIS under the same adversary. %This holds whether the object is one-shot or long-lived. Therefore, the computability of any object in shared memory under an adversarial AS scheduler can be equivalently investigated in IIS

    Brief Announcement: Compact Topology of Shared-Memory Adversaries

    Get PDF
    The paper proposes a simple topological characterization of a large class of adversarial distributed-computing models via affine tasks: sub-complexes of the second iteration of the standard chromatic subdivision. We show that the task computability of a model in the class is precisely captured by iterations of the corresponding affine task. While an adversary is in general defined as a non-compact set of infinite runs, its affine task is just a finite subset of runs of the 2-round iterated immediate snapshot (IIS) model. Our results generalize and improve all previously derived topological characterizations of distributed-computing models

    Continuous Tasks and the Asynchronous Computability Theorem

    Get PDF
    The celebrated 1999 Asynchronous Computability Theorem (ACT) of Herlihy and Shavit characterized distributed tasks that are wait-free solvable and uncovered deep connections with combinatorial topology. We provide an alternative characterization of those tasks by means of the novel concept of continuous tasks, which have an input/output specification that is a continuous function between the geometric realizations of the input and output complex: We state and prove a precise characterization theorem (CACT) for wait-free solvable tasks in terms of continuous tasks. Its proof utilizes a novel chromatic version of a foundational result in algebraic topology, the simplicial approximation theorem, which is also proved in this paper. Apart from the alternative proof of the ACT implied by our CACT, we also demonstrate that continuous tasks have an expressive power that goes beyond classic task specifications, and hence open up a promising venue for future research: For the well-known approximate agreement task, we show that one can easily encode the desired proportion of the occurrence of specific outputs, namely, exact agreement, in the continuous task specification

    Randomized Two-Process Wait-Free Test-and-Set

    Full text link
    We present the first explicit, and currently simplest, randomized algorithm for 2-process wait-free test-and-set. It is implemented with two 4-valued single writer single reader atomic variables. A test-and-set takes at most 11 expected elementary steps, while a reset takes exactly 1 elementary step. Based on a finite-state analysis, the proofs of correctness and expected length are compressed into one table.Comment: 9 pages, 4 figures, LaTeX source; Submitte

    Topological Characterization of Task Solvability in General Models of Computation

    Full text link
    The famous asynchronous computability theorem (ACT) relates the existence of an asynchronous wait-free shared memory protocol for solving a task with the existence of a simplicial map from a subdivision of the simplicial complex representing the inputs to the simplicial complex representing the allowable outputs. The original theorem relies on a correspondence between protocols and simplicial maps in round-structured models of computation that induce a compact topology. This correspondence, however, is far from obvious for computation models that induce a non-compact topology, and indeed previous attempts to extend the ACT have failed. This paper shows that in every non-compact model, protocols solving tasks correspond to simplicial maps that need to be continuous. It first proves a generalized ACT for sub-IIS models, some of which are non-compact, and applies it to the set agreement task. Then it proves that in general models too, protocols are simplicial maps that need to be continuous, hence showing that the topological approach is universal. Finally, it shows that the approach used in ACT that equates protocols and simplicial complexes actually works for every compact model. Our study combines, for the first time, combinatorial and point-set topological aspects of the executions admitted by the computation model

    Power and limits of distributed computing shared memory models

    Get PDF
    Due to the advent of multicore machines, shared memory distributed computing models taking into account asynchrony and process crashes are becoming more and more important. This paper visits some of the models for these systems, and analyses their properties from a computability point of view. Among them, the snapshot model and the iterated model are particularly investigated. The paper visits also several approaches that have been proposed to model crash failures. Among them, the wait-free case where any number of processes can crash is fundamental. The paper also considers models where up to t processes can crash, and where the crashes are not independent. The aim of this survey is to help the reader to better understand recent advances on what is known about the power and limits of distributed computing shared memory models and their underlying mathematics.Ce rapport est une introduction au modÚles de calcul asynchrone pour les systÚmes à mémoire partagée

    Wait-Freedom with Advice

    Full text link
    We motivate and propose a new way of thinking about failure detectors which allows us to define, quite surprisingly, what it means to solve a distributed task \emph{wait-free} \emph{using a failure detector}. In our model, the system is composed of \emph{computation} processes that obtain inputs and are supposed to output in a finite number of steps and \emph{synchronization} processes that are subject to failures and can query a failure detector. We assume that, under the condition that \emph{correct} synchronization processes take sufficiently many steps, they provide the computation processes with enough \emph{advice} to solve the given task wait-free: every computation process outputs in a finite number of its own steps, regardless of the behavior of other computation processes. Every task can thus be characterized by the \emph{weakest} failure detector that allows for solving it, and we show that every such failure detector captures a form of set agreement. We then obtain a complete classification of tasks, including ones that evaded comprehensible characterization so far, such as renaming or weak symmetry breaking
    • 

    corecore