79 research outputs found

    An Asymptotically Optimal Structural Attack on the ABC Multivariate Encryption Scheme

    Get PDF
    Historically, multivariate public key cryptography has been less than successful at offering encryption schemes which are both secure and efficient. At PQCRYPTO \u2713 in Limoges, Tao, Diene, Tang, and Ding introduced a promising new multivariate encryption algorithm based on a fundamentally new idea: hiding the structure of a large matrix algebra over a finite field. We present an attack based on subspace differential invariants inherent to this methodology. The attack is is a structural key recovery attack which is asymptotically optimal among all known attacks (including algebraic attacks) on the original scheme and its generalizations

    The complexity of MinRank

    Get PDF
    In this note, we leverage some of our results from arXiv:1706.06319 to produce a concise and rigorous proof for the complexity of the generalized MinRank Problem in the under-defined and well-defined case. Our main theorem recovers and extends previous results by Faug\`ere, Safey El Din, Spaenlehauer (arXiv:1112.4411).Comment: Corrected a typo in the formula of the main theore

    Developments in multivariate post quantum cryptography.

    Get PDF
    Ever since Shor\u27s algorithm was introduced in 1994, cryptographers have been working to develop cryptosystems that can resist known quantum computer attacks. This push for quantum attack resistant schemes is known as post quantum cryptography. Specifically, my contributions to post quantum cryptography has been to the family of schemes known as Multivariate Public Key Cryptography (MPKC), which is a very attractive candidate for digital signature standardization in the post quantum collective for a wide variety of applications. In this document I will be providing all necessary background to fully understand MPKC and post quantum cryptography as a whole. Then, I will walk through the contributions I provided in my publications relating to differential security proofs for HFEv and HFEv−, key recovery attack for all parameters of HFEm, and my newly proposed multivariate encryption scheme, HFERP

    Cryptanalysis of Simple Matrix Scheme for Encryption

    Get PDF
    Recently, Tao et al. presented a new simple and efficient multivariate pubic key encryption scheme based on matrix multiplica- tion, which is called Simple Matrix Scheme or ABC. Using linearization method, we propose a polynomial time algorithm, which directly solves an equivalent private key from the public key of ABC. Furthermore, our attack can also be applied to the variants of ABC since these variants have the same algebraic structure as the ABC scheme. Therefore, the ABC cryptosystem and its variants are insecure

    International Symposium on Mathematics, Quantum Theory, and Cryptography

    Get PDF
    This open access book presents selected papers from International Symposium on Mathematics, Quantum Theory, and Cryptography (MQC), which was held on September 25-27, 2019 in Fukuoka, Japan. The international symposium MQC addresses the mathematics and quantum theory underlying secure modeling of the post quantum cryptography including e.g. mathematical study of the light-matter interaction models as well as quantum computing. The security of the most widely used RSA cryptosystem is based on the difficulty of factoring large integers. However, in 1994 Shor proposed a quantum polynomial time algorithm for factoring integers, and the RSA cryptosystem is no longer secure in the quantum computing model. This vulnerability has prompted research into post-quantum cryptography using alternative mathematical problems that are secure in the era of quantum computers. In this regard, the National Institute of Standards and Technology (NIST) began to standardize post-quantum cryptography in 2016. This book is suitable for postgraduate students in mathematics and computer science, as well as for experts in industry working on post-quantum cryptography

    International Symposium on Mathematics, Quantum Theory, and Cryptography

    Get PDF
    This open access book presents selected papers from International Symposium on Mathematics, Quantum Theory, and Cryptography (MQC), which was held on September 25-27, 2019 in Fukuoka, Japan. The international symposium MQC addresses the mathematics and quantum theory underlying secure modeling of the post quantum cryptography including e.g. mathematical study of the light-matter interaction models as well as quantum computing. The security of the most widely used RSA cryptosystem is based on the difficulty of factoring large integers. However, in 1994 Shor proposed a quantum polynomial time algorithm for factoring integers, and the RSA cryptosystem is no longer secure in the quantum computing model. This vulnerability has prompted research into post-quantum cryptography using alternative mathematical problems that are secure in the era of quantum computers. In this regard, the National Institute of Standards and Technology (NIST) began to standardize post-quantum cryptography in 2016. This book is suitable for postgraduate students in mathematics and computer science, as well as for experts in industry working on post-quantum cryptography

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Theory and Practice of Cryptography and Network Security Protocols and Technologies

    Get PDF
    In an age of explosive worldwide growth of electronic data storage and communications, effective protection of information has become a critical requirement. When used in coordination with other tools for ensuring information security, cryptography in all of its applications, including data confidentiality, data integrity, and user authentication, is a most powerful tool for protecting information. This book presents a collection of research work in the field of cryptography. It discusses some of the critical challenges that are being faced by the current computing world and also describes some mechanisms to defend against these challenges. It is a valuable source of knowledge for researchers, engineers, graduate and doctoral students working in the field of cryptography. It will also be useful for faculty members of graduate schools and universities

    Practical unconditionally secure signature schemes and related protocols

    Get PDF
    The security guarantees provided by digital signatures are vital to many modern applications such as online banking, software distribution, emails and many more. Their ubiquity across digital communications arguably makes digital signatures one of the most important inventions in cryptography. Worryingly, all commonly used schemes – RSA, DSA and ECDSA – provide only computational security, and are rendered completely insecure by quantum computers. Motivated by this threat, this thesis focuses on unconditionally secure signature (USS) schemes – an information theoretically secure analogue of digital signatures. We present and analyse two new USS schemes. The first is a quantum USS scheme that is both information-theoretically secure and realisable with current technology. The scheme represents an improvement over all previous quantum USS schemes, which were always either realisable or had a full security proof, but not both. The second is an entirely classical USS scheme that uses minimal resources and is vastly more efficient than all previous schemes, to such an extent that it could potentially find real-world application. With the discovery of such an efficient classical USS scheme using only minimal resources, it is difficult to see what advantage quantum USS schemes may provide. Lastly, we remain in the information-theoretic security setting and consider two quantum protocols closely related to USS schemes – oblivious transfer and quantum money. For oblivious transfer, we prove new lower bounds on the minimum achievable cheating probabilities in any 1-out-of-2 protocol. For quantum money, we present a scheme that is more efficient and error tolerant than all previous schemes. Additionally, we show that it can be implemented using a coherent source and lossy detectors, thereby allowing for the first experimental demonstration of quantum coin creation and verification
    corecore