3 research outputs found

    Remote Sensing of Precipitation: Volume 2

    Get PDF
    Precipitation is a well-recognized pillar in global water and energy balances. An accurate and timely understanding of its characteristics at the global, regional, and local scales is indispensable for a clearer understanding of the mechanisms underlying the Earth’s atmosphere–ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises a primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne

    Remote Sensing of Precipitation: Part II

    Get PDF
    Precipitation is a well-recognized pillar in the global water and energy balances. The accurate and timely understanding of its characteristics at the global, regional and local scales is indispensable for a clearer insight on the mechanisms underlying the Earth’s atmosphere-ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises the primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne. This volume hosts original research contributions on several aspects of remote sensing of precipitation, including applications which embrace the use of remote sensing in tackling issues such as precipitation estimation, seasonal characteristics of precipitation and frequency analysis, assessment of satellite precipitation products, storm prediction, rain microphysics and microstructure, and the comparison of satellite and numerical weather prediction precipitation products

    An Assessment of Satellite Radiance Data Assimilation in RMAPS

    No full text
    Due to the availability of observations and the effectiveness of bias correction, it is still a challenge to assimilate data from the polar orbit satellites into a limited-area and frequently updated model. This study assessed the initial application of satellite radiance data from multiple platforms in the Rapid-refresh Multi-scale Analysis and Prediction System (RMAPS). Satellite radiance data from the advanced microwave sounding unit-A (AMSU-A) and microwave humidity sounding (MHS) were used. Two 12-day retrospective runs were conducted to evaluate the impact of assimilating satellite radiance data on 0–24 h forecasts using RMAPS. The forecasts, initialized from analyses with and without satellite radiance data, were verified against observations. The results showed that satellite radiance data from AMSU-A and MHS had a positive impact on the initial conditions and the forecasts of RMAPS, even over the relatively data-rich area of North China. Compared to the control run that only assimilated conventional observations, an improvement of about 36.8% can be obtained for the temperature bias between 300 hPa and 850 hPa and 0.65% for the average RMSE. Satellite radiance observations from 1200 UTC contribute relatively significantly (77.8%) to the bias improvement of the initial temperature field. For the wind at 10 m, the bias and root-mean-square error (RMSE) both had a reduction for the 0–12 h forecast range. An improvement can be also found for the skill score of the 3-h accumulated rainfall below 10.0 mm in the first 12 h of the forecast range. There was a slight improvement in the skill score of the 6-h accumulated rainfall above 50 mm over North China, with a 20.7% improvement for the first 12 h of the forecast. The inclusion of satellite radiance observations was found to be beneficial for the initial temperature, which consequently improved the forecast skill of the 0–12 h range in the RMAPS
    corecore