10,443 research outputs found

    Combining behavioural types with security analysis

    Get PDF
    Today's software systems are highly distributed and interconnected, and they increasingly rely on communication to achieve their goals; due to their societal importance, security and trustworthiness are crucial aspects for the correctness of these systems. Behavioural types, which extend data types by describing also the structured behaviour of programs, are a widely studied approach to the enforcement of correctness properties in communicating systems. This paper offers a unified overview of proposals based on behavioural types which are aimed at the analysis of security properties

    Featherweight VeriFast

    Full text link
    VeriFast is a leading research prototype tool for the sound modular verification of safety and correctness properties of single-threaded and multithreaded C and Java programs. It has been used as a vehicle for exploration and validation of novel program verification techniques and for industrial case studies; it has served well at a number of program verification competitions; and it has been used for teaching by multiple teachers independent of the authors. However, until now, while VeriFast's operation has been described informally in a number of publications, and specific verification techniques have been formalized, a clear and precise exposition of how VeriFast works has not yet appeared. In this article we present for the first time a formal definition and soundness proof of a core subset of the VeriFast program verification approach. The exposition aims to be both accessible and rigorous: the text is based on lecture notes for a graduate course on program verification, and it is backed by an executable machine-readable definition and machine-checked soundness proof in Coq

    Crypto-Verifying Protocol Implementations in ML

    Get PDF
    We intend to narrow the gap between concrete implementations and verified models of cryptographic protocols. We consider protocols implemented in F#, a variant of ML, and verified using CryptoVerif, Blanchet's protocol verifier for computational cryptography. We experiment with compilers from F# code to CryptoVerif processes, and from CryptoVerif declarations to F# code. We present two case studies: an implementation of the Otway-Rees protocol, and an implementation of a simplified password-based authentication protocol. In both cases, we obtain concrete security guarantees for a computational model closely related to executable code

    Time Properties Verification Framework for UML-MARTE Safety Critical Real-Time Systems

    Get PDF
    Time properties are key requirements for the reliability of Safety Critical Real-Time Systems (RTS). UML and MARTE are standardized modelling languages widely accepted by industrial designers for the design of RTS using Model-Driven Engineering (MDE). However, formal verification at early phases of the system lifecycle for UML-MARTE models remains mainly an open issue. In this paper, we present a time properties verification framework for UML-MARTE safety critical RTS. This framework relies on a property-driven transformation from UML architecture and behaviour models to executable and verifiable models expressed with Time Petri Nets (TPN). Meanwhile, it translates the time properties into a set of property patterns, corresponding to TPN observers. The observer-based model checking approach is then performed on the produced TPN. This verification framework can assess time properties like upper bound for loops and buffers, Best/Worst-Case Response Time, Best/Worst-Case Execution Time, Best/Worst-Case Traversal Time, schedulability, and synchronization-related properties (synchronization, coincidence, exclusion, precedence, sub-occurrence, causality). In addition, it can verify some behavioural properties like absence of deadlock or dead branches. This framework is illustrated with a representative case study. This paper also provides experimental results and evaluates the method's performance

    Enabling Multi-Perspective Business Process Compliance

    Get PDF
    A particular challenge for any enterprise is to ensure that its business processes conform with compliance rules, i.e., semantic constraints on the multiple perspectives of the business processes. Compliance rules stem, for example, from legal regulations, corporate best practices, domain-specific guidelines, and industrial standards. In general, compliance rules are multi-perspective, i.e., they not only restrict the process behavior (i.e. control flow), but may refer to other process perspectives (e.g. time, data, and resources) and the interactions (i.e. message exchanges) of a business process with other processes as well. The aim of this thesis is to improve the specification and verification of multi-perspective process compliance based on three contributions: 1. The extended Compliance Rule Graph (eCRG) language, which enables the visual modeling of multi-perspective compliance rules. Besides control flow, the latter may refer to the time, data, resource, and interaction perspectives of a business process. 2. A framework for multi-perspective monitoring of the compliance of running processes with a given set of eCRG compliance rules. 3. Techniques for verifying business process compliance with respect to the interaction perspective. In particular, we consider compliance verification for cross-organizational business processes, for which solely incomplete process knowledge is available. All contributions were thoroughly evaluated through proof-of-concept prototypes, case studies, empirical studies, and systematic comparisons with related works

    Modular Termination Verification

    Get PDF
    We propose an approach for the modular specification and verification of total correctness properties of object-oriented programs. We start from an existing program logic for partial correctness based on separation logic and abstract predicate families. We extend it with call permissions qualified by an arbitrary ordinal number, and we define a specification style that properly hides implementation details, based on the ideas of using methods and bags of methods as ordinals, and exposing the bag of methods reachable from an object as an abstract predicate argument. These enable each method to abstractly request permission to call all methods reachable by it any finite number of times, and to delegate similar permissions to its callees. We illustrate the approach with several examples

    Engineering model transformations with transML

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007%2Fs10270-011-0211-2Model transformation is one of the pillars of model-driven engineering (MDE). The increasing complexity of systems and modelling languages has dramatically raised the complexity and size of model transformations as well. Even though many transformation languages and tools have been proposed in the last few years, most of them are directed to the implementation phase of transformation development. In this way, even though transformations should be built using sound engineering principles—just like any other kind of software—there is currently a lack of cohesive support for the other phases of the transformation development, like requirements, analysis, design and testing. In this paper, we propose a unified family of languages to cover the life cycle of transformation development enabling the engineering of transformations. Moreover, following an MDE approach, we provide tools to partially automate the progressive refinement of models between the different phases and the generation of code for several transformation implementation languages.This work has been sponsored by the Spanish Ministry of Science and Innovation with project METEORIC (TIN2008-02081), and by the R&D program of the Community of Madrid with projects “e-Madrid" (S2009/TIC-1650). Parts of this work were done during the research stays of Esther and Juan at the University of York, with financial support from the Spanish Ministry of Science and Innovation (grant refs. JC2009-00015, PR2009-0019 and PR2008-0185)
    • …
    corecore