1,472 research outputs found

    Formal connectivity verification of clock and reset signals in ultra-low-power SoC designs

    Get PDF
    Abstract. This thesis investigates the usage of formal connectivity verification on clock and reset signal connectivity in ultra-low-power SoC designs. The origin of power consumption in CMOS circuits is explained, and the conflict between dynamic and static power on system parameter level is introduced. Common power reduction techniques are introduced and explained in some detail. Overview of functional verification and its role in the design flow is presented. The main classification of functional verification into logic simulation and formal verification is discussed, and details of both are explained and compared. Challenges rising from low power design methodologies are introduced. Detailed view of connectivity and integration in SoC designs is provided, and a specified method of verifying connectivity is introduced in the form of formal connectivity verification. The practical part of the thesis starts with an explanation of the verification goal and requirements for achieving it. Structure of the design environment used in the verification task is explained, and the different stages that the verification was conducted on. Creation of used connectivity properties and the used process flow for the chosen software tool is presented. The process of confirming falsified properties as design bugs is introduced. The results of the verification task are presented, providing the total target amount for each verification stage, as well as the found bugs. The found bugs and their circumstances are explained. Comparison is made between the conventional method of verifying connectivity and the investigated formal method. Results show a great decrease in overall work effort, resourcing and time spent on the connectivity verification.Formaali liitettävyysverifiointi kello- ja reset-signaaleille ultra-matalan tehonkulutuksen järjestelmäpiireissä. Tiivistelmä. Tämä diplomityö tutkii formaalin liitettävyysverifionnin käyttöä kello- ja reset-signaalien yhteyksille ultra-matalan tehonkulutuksen järjestelmäpiireissä. Tehonkulutuksen lähteet CMOS piireissä selitetään, ja esitetään konflikti dynaamisen ja staattisen tehonkulutuksen välillä systeemin parametritasolla. Tavanomaisia tehonkulutusta vähentäviä tekniikoita esitellään ja selitetään jossain määrin. Funktionaalisen verifioinnin yleiskatsaus ja asema suunnitteluvuossa esitellään. Funktionaalisen verifioinnin pääjaottelua logiikkasimulaatioon ja formaaliin verifiointiin käsitellään, ja molempien yksityiskohtia selitetään ja vertaillaan. Matalan tehonkulutuksen metodologioiden aiheuttamat ongelmat esitetään. Yksityiskohtainen kuvaus liitettävyydestä ja integroinnista järjestelmäpiireissä selitetään, ja eritelty metodi liitettävyyden verifioimiselle esitellään formaalin liitettävyysverifionnin muodossa. Käytännön osuus diplomityöstä alkaa verifoinnin tavoitteen ja vaatimusten esittelemisellä. Käytetyn mallin rakenne ja verifiointitehtävä selitetään, sekä eri tasot joilla verifiointi suoritettiin. Liitettävyys-ominaisuuksien luominen, sekä käytetty prosessivuo valitulle työkalulle esitetään. Vääriksi todistettujen ominaisuuksien varmistaminen suunnitteluvirheiksi esitellään. Tulokset verifointitehtävästä esitellään, käsitellen verifioinnin kohteiden kokonaista lukumäärää molemmilla verifiointitasoilla, sekä niistä löydettyjen virheiden määrää. Löydetyt suunnitteluvirheet ja niiden seikkaperät selitetään. Vertailua tehdään perinteisen liitettävyyden verifionnin metodin ja tutkitun formaalin metodin välillä. Tulokset osoittavat suuren säästön kokonaisessa työmäärässä, resurssoinnissa sekä liitettävyyden verifiointiin kulutetussa ajassa

    Low Power Processor Architectures and Contemporary Techniques for Power Optimization – A Review

    Get PDF
    The technological evolution has increased the number of transistors for a given die area significantly and increased the switching speed from few MHz to GHz range. Such inversely proportional decline in size and boost in performance consequently demands shrinking of supply voltage and effective power dissipation in chips with millions of transistors. This has triggered substantial amount of research in power reduction techniques into almost every aspect of the chip and particularly the processor cores contained in the chip. This paper presents an overview of techniques for achieving the power efficiency mainly at the processor core level but also visits related domains such as buses and memories. There are various processor parameters and features such as supply voltage, clock frequency, cache and pipelining which can be optimized to reduce the power consumption of the processor. This paper discusses various ways in which these parameters can be optimized. Also, emerging power efficient processor architectures are overviewed and research activities are discussed which should help reader identify how these factors in a processor contribute to power consumption. Some of these concepts have been already established whereas others are still active research areas. © 2009 ACADEMY PUBLISHER

    Design and Analysis of an Adaptive Asynchronous System Architecture for Energy Efficiency

    Get PDF
    Power has become a critical design parameter for digital CMOS integrated circuits. With performance still garnering much concern, a central idea has emerged: minimizing power consumption while maintaining performance. The use of dynamic voltage scaling (DVS) with parallelism has shown to be an effective way of saving power while maintaining performance. However, the potency of DVS and parallelism in traditional, clocked synchronous systems is limited because of the strict timing requirements such systems must comply with. Delay-insensitive (DI) asynchronous systems have the potential to benefit more from these techniques due to their flexible timing requirements and high modularity. This dissertation presents the design and analysis of a real-time adaptive DVS architecture for paralleled Multi-Threshold NULL Convention Logic (MTNCL) systems. Results show that energy-efficient systems with low area overhead can be created using this approach

    Leakage Current Analysis for Diagnosis of Bridge Defects in Power-Gating Designs

    Get PDF
    Manufacturing defects that do not affect the functional operation of low power Integrated Circuits (ICs) can nevertheless impact their power saving capability. We show that stuck-ON faults on the power switches and resistive bridges between the power networks can impair the power saving capability of power-gating designs. For quantifying the impact of such faults on the power savings of power-gating designs, we propose a diagnosis technique that targets bridges between the power networks. The proposed technique is based on the static power analysis of a power-gating design in stand-by mode and it utilizes a novel on-chip signature generation unit, which is sensitive to the voltage level between power rails, the measurements of which are processed off-line for the diagnosis of bridges that can adversely affect power savings. We explore, through SPICE simulation of the largest IWLS’05 benchmarks synthesised using a 32 nm CMOS technology, the trade-offs achieved by the proposed technique between diagnosis accuracy and area cost and we evaluate its robustness against process variation. The proposed technique achieves a diagnosis resolution that is higher than 98.6% and 97.9% for bridges of R ≳ 10MΩ(weak bridges) and bridges of R ≲ 10MΩ (strong bridges), respectively, and a diagnosis accuracy higher than 94.5% for all the examined defects. The area overhead is small and scalable: it is found to be 1.8% and 0.3% for designs with 27K and 157K gate equivalents, respectively

    A Framework for Noise Analysis and Verification of Analog Circuits

    Get PDF
    Analog circuit design and verification face significant challenges due to circuit complexity and short market windows. In particular, the influence of technology parameters on circuits, noise modeling and verification still remain a priority for many applications. Noise could be due to unwanted interaction between the various circuit blocks or it could be inherited from the circuit elements. Current industrial designs rely heavily on simulation techniques, but ensuring the correctness of such designs under all circumstances usually becomes impractically expensive. In this PhD thesis, we propose a methodology for modeling and verification of analog designs in the presence of noise and process variation using run-time verification methods. Verification based on run-time techniques employs logical or statistical monitors to check if an execution (simulation) of the design model violates the design specifications (properties). In order to study the random behavior of noise, we propose an approach based on modeling the designs using stochastic differential equations (SDE) in the time domain. Then, we define assertion and statistical verification methods in a MATLAB SDE simulation framework for monitoring properties of interest in order to detect errors. In order to overcome some of the drawbacks associated with monitoring techniques, we define a pattern matching based verification method for qualitative estimation of the simulation traces. We illustrate the efficiency of the proposed methods on different benchmark circuits

    A Structured Design Methodology for High Performance VLSI Arrays

    Get PDF
    abstract: The geometric growth in the integrated circuit technology due to transistor scaling also with system-on-chip design strategy, the complexity of the integrated circuit has increased manifold. Short time to market with high reliability and performance is one of the most competitive challenges. Both custom and ASIC design methodologies have evolved over the time to cope with this but the high manual labor in custom and statistic design in ASIC are still causes of concern. This work proposes a new circuit design strategy that focuses mostly on arrayed structures like TLB, RF, Cache, IPCAM etc. that reduces the manual effort to a great extent and also makes the design regular, repetitive still achieving high performance. The method proposes making the complete design custom schematic but using the standard cells. This requires adding some custom cells to the already exhaustive library to optimize the design for performance. Once schematic is finalized, the designer places these standard cells in a spreadsheet, placing closely the cells in the critical paths. A Perl script then generates Cadence Encounter compatible placement file. The design is then routed in Encounter. Since designer is the best judge of the circuit architecture, placement by the designer will allow achieve most optimal design. Several designs like IPCAM, issue logic, TLB, RF and Cache designs were carried out and the performance were compared against the fully custom and ASIC flow. The TLB, RF and Cache were the part of the HEMES microprocessor.Dissertation/ThesisPh.D. Electrical Engineering 201

    Design of variation-tolerant synchronizers for multiple clock and voltage domains

    Get PDF
    PhD ThesisParametric variability increasingly affects the performance of electronic circuits as the fabrication technology has reached the level of 32nm and beyond. These parameters may include transistor Process parameters (such as threshold voltage), supply Voltage and Temperature (PVT), all of which could have a significant impact on the speed and power consumption of the circuit, particularly if the variations exceed the design margins. As systems are designed with more asynchronous protocols, there is a need for highly robust synchronizers and arbiters. These components are often used as interfaces between communication links of different timing domains as well as sampling devices for asynchronous inputs coming from external components. These applications have created a need for new robust designs of synchronizers and arbiters that can tolerate process, voltage and temperature variations. The aim of this study was to investigate how synchronizers and arbiters should be designed to tolerate parametric variations. All investigations focused mainly on circuit-level and transistor level designs and were modeled and simulated in the UMC90nm CMOS technology process. Analog simulations were used to measure timing parameters and power consumption along with a “Monte Carlo” statistical analysis to account for process variations. Two main components of synchronizers and arbiters were primarily investigated: flip-flop and mutual-exclusion element (MUTEX). Both components can violate the input timing conditions, setup and hold window times, which could cause metastability inside their bistable elements and possibly end in failures. The mean-time between failures is an important reliability feature of any synchronizer delay through the synchronizer. The MUTEX study focused on the classical circuit, in addition to a number of tolerance, based on increasing internal gain by adding current sources, reducing the capacitive loading, boosting the transconductance of the latch, compensating the existing Miller capacitance, and adding asymmetry to maneuver the metastable point. The results showed that some circuits had little or almost no improvements, while five techniques showed significant improvements by reducing τ and maintaining high tolerance. Three design approaches are proposed to provide variation-tolerant synchronizers. wagging synchronizer proposed to First, the is significantly increase reliability over that of the conventional two flip-flop synchronizer. The robustness of the wagging technique can be enhanced by using robust τ latches or adding one more cycle of synchronization. The second approach is the Metastability Auto-Detection and Correction (MADAC) latch which relies on swiftly detecting a metastable event and correcting it by enforcing the previously stored logic value. This technique significantly reduces the resolution time down from uncertain synchronization technique is proposed to transfer signals between Multiple- Voltage Multiple-Clock Domains (MVD/MCD) that do not require conventional level-shifters between the domains or multiple power supplies within each domain. This interface circuit uses a synchronous set and feedback reset protocol which provides level-shifting and synchronization of all signals between the domains, from a wide range of voltage-supplies and clock frequencies. Overall, synchronizer circuits can tolerate variations to a greater extent by employing the wagging technique or using a MADAC latch, while MUTEX tolerance can suffice with small circuit modifications. Communication between MVD/MCD can be achieved by an asynchronous handshake without a need for adding level-shifters.The Saudi Arabian Embassy in London, Umm Al-Qura University, Saudi Arabi

    Amplifier Nonlinear Modeling with RF Pulses

    Get PDF
    This paper proposes a Volterra kernel identification procedure for wireless amplifiers with nonlinear memory. The technique is based on a reduced-order Volterra model for wideband amplifiers that is favorably compared with widely used memory polynomial model in terms of normalized mean square error. The identification method takes advantage of the particular model structure and is thoroughly derived with a proper selection of pulse-like waveforms of known amplitude as probing signals with special emphasis on the extraction of the fifth-order kernel. The main advantage of the method is that it allows exploring the dynamic range of the amplifier without rising the temperature in the device or altering the biasing point. For validation purposes, a commercial amplifier has been characterized and the extracted kernels have been used to predict the response under wideband code-division multiple-access-like signals. In addition to the simplicity of the deterministic approach used in this extraction procedure, the agreement of the predicted responses with measurements was highly satisfactory in all cases and permitted the capture of phenomena that are due to nonlinear memory effects.CICYT TEC2004-06451-C05-03Junta de Andalucía Grant P07-TIC-0264

    Replica Technique for Adaptive Refresh Timing of Gain-Cell-Embedded DRAM

    Get PDF
    Gain cells have recently been shown to be a viable alternative to static random access memory in low-power applications due to their low leakage currents and high density. The primary component of power consumption in these arrays is the dynamic power consumed during periodic refresh operations. Refresh timing is traditionally set according to a worst-case evaluation of retention time under extreme process variations, and worst-case access statistics, leading to frequent power-hungry refresh cycles. In this brief we present a replica technique for automatically tracking the retention time of a gain-cell-embedded dynamic-random-access-memory macrocell according to process variations and operating statistics, thereby reducing the data retention power of the array. A 2-kb array was designed and fabricated in a mature 0.18-mu m CMOS process, appropriate for integration in ultralow power applications, such as biomedical sensors. Measurements show efficient retention time tracking across a range of supply voltages and access statistics, lowering the refresh frequency by more than 5x, as compared with traditional worst-case design
    corecore