1,086 research outputs found

    Tactile Sensing for Robotic Applications

    Get PDF
    This chapter provides an overview of tactile sensing in robotics. This chapter is an attempt to answer three basic questions: \u2022 What is meant by Tactile Sensing? \u2022 Why Tactile Sensing is important? \u2022 How Tactile Sensing is achieved? The chapter is organized to sequentially provide the answers to above basic questions. Tactile sensing has often been considered as force sensing, which is not wholly true. In order to clarify such misconceptions about tactile sensing, it is defined in section 2. Why tactile section is important for robotics and what parameters are needed to be measured by tactile sensors to successfully perform various tasks, are discussed in section 3. An overview of `How tactile sensing has been achieved\u2019 is given in section 4, where a number of technologies and transduction methods, that have been used to improve the tactile sensing capability of robotic devices, are discussed. Lack of any tactile analog to Complementary Metal Oxide Semiconductor (CMOS) or Charge Coupled Devices (CCD) optical arrays has often been cited as one of the reasons for the slow development of tactile sensing vis-\ue0-vis other sense modalities like vision sensing. Our own contribution \u2013 development of tactile sensing arrays using piezoelectric polymers and involving silicon micromachining - is an attempt in the direction of achieving tactile analog of CMOS optical arrays. The first phase implementation of these tactile sensing arrays is discussed in section 5. Section 6 concludes the chapter with a brief discussion on the present status of tactile sensing and the challenges that remain to be solved

    複数の静電容量型柔軟触覚デバイスを用いた三軸力センサの開発

    Get PDF
    早大学位記番号:新7325早稲田大

    Biomimetic tactile sensing

    Get PDF

    感度調整可能な3軸マルチモーダルスキンセンサーモジュールの開発

    Get PDF
    早大学位記番号:新8538早稲田大

    EM-skin:an artificial robotic skin using magnetic inductance tomography

    Get PDF
    corecore