344,910 research outputs found

    Online dispute resolution: an artificial intelligence perspective

    Get PDF
    Litigation in court is still the main dispute resolution mode. However, given the amount and characteristics of the new disputes, mostly arising out of electronic contracting, courts are becoming slower and outdated. Online Dispute Resolution (ODR) recently emerged as a set of tools and techniques, supported by technology, aimed at facilitating conflict resolution. In this paper we present a critical evaluation on the use of Artificial Intelligence (AI) based techniques in ODR. In order to fulfill this goal, we analyze a set of commercial providers (in this case twenty four) and some research projects (in this circumstance six). Supported by the results so far achieved, a new approach to deal with the problem of ODR is proposed, in which we take on some of the problems identified in the current state of the art in linking ODR and AI.The work described in this paper is included in TIARAC - Telematics and Artificial Intelligence in Alternative Conflict Resolution Project (PTDC/JUR/71354/2006), which is a research project supported by FCT (Science & Technology Foundation), Portugal. The work of Davide Carneiro is also supported by a doctoral grant by FCT (SFRH/BD/64890/2009).Acknowledgments. The work described in this paper is included in TIARAC - Telematics and Artificial Intelligence in Alternative Conflict Resolution Project (PTDC/JUR/71354/2006), which is a research project supported by FCT (Science & Technology Foundation), Portugal. The work of Davide Carneiro is also supported by a doctoral grant by FCT (SFRH/BD/64890/2009)

    Artificial Intelligence in PET: An Industry Perspective

    Get PDF
    Artificial intelligence (AI) has significant potential to positively impact and advance medical imaging, including positron emission tomography (PET) imaging applications. AI has the ability to enhance and optimize all aspects of the PET imaging chain from patient scheduling, patient setup, protocoling, data acquisition, detector signal processing, reconstruction, image processing, and interpretation. AI poses industry-specific challenges which will need to be addressed and overcome to maximize the future potentials of AI in PET. This article provides an overview of these industry-specific challenges for the development, standardization, commercialization, and clinical adoption of AI and explores the potential enhancements to PET imaging brought on by AI in the near future. In particular, the combination of on-demand image reconstruction, AI, and custom-designed data-processing workflows may open new possibilities for innovation which would positively impact the industry and ultimately patients

    A Minimal Architecture for General Cognition

    Full text link
    A minimalistic cognitive architecture called MANIC is presented. The MANIC architecture requires only three function approximating models, and one state machine. Even with so few major components, it is theoretically sufficient to achieve functional equivalence with all other cognitive architectures, and can be practically trained. Instead of seeking to transfer architectural inspiration from biology into artificial intelligence, MANIC seeks to minimize novelty and follow the most well-established constructs that have evolved within various sub-fields of data science. From this perspective, MANIC offers an alternate approach to a long-standing objective of artificial intelligence. This paper provides a theoretical analysis of the MANIC architecture.Comment: 8 pages, 8 figures, conference, Proceedings of the 2015 International Joint Conference on Neural Network

    An Application-centric Perspective on Industrial Artificial Intelligence

    Get PDF
    Advances in Artificial Intelligence have made its application increasingly relevant to all types of Information Systems. One area where researchers and practitioners see massive potential is the interface between Artificial Intelligence-empowered Information Systems and industrial processes. This explicit area of Industrial Artificial Intelligence and Industry 4.0 has been a popular topic of recent work and has opened up new research streams and applications. However, given the increasing number of publications, it is difficult to discern where the research field is heading. In our work, we conduct a systematic literature review of 296 scientific articles to provide a comprehensive overview of the current state of Industrial Artificial Intelligence in terms of research streams and application areas. We present both a metadata analysis as well as an application-specific analysis. Our results reveal insights into 14 major application areas as well as several findings on applied algorithms and approaches of Industrial Artificial Intelligence

    Tacit Representations and Artificial Intelligence: Hidden Lessons from an Embodied Perspective on Cognition

    Get PDF
    In this paper, I explore how an embodied perspective on cognition might inform research on artificial intelligence. Many embodied cognition theorists object to the central role that representations play on the traditional view of cognition. Based on these objections, it may seem that the lesson from embodied cognition is that AI should abandon representation as a central component of intelligence. However, I argue that the lesson from embodied cognition is actually that AI research should shift its focus from how to utilize explicit representations to how to create and use tacit representations. To develop this suggestion, I provide an overview of the commitments of the classical view and distinguish three critiques of the role that representations play in that view. I provide further exploration and defense of Daniel Dennett’s distinction between explicit and tacit representations. I argue that we should understand the embodied cognition approach using a framework that includes tacit representations. Given this perspective, I will explore some AI research areas that may be recommended by an embodied perspective on cognition

    Open Science, Open Data, and Open Scholarship: European Policies to Make Science Fit for the Twenty-First Century

    Get PDF
    Open science will make science more efficient, reliable, and responsive to societal challenges. The European Commission has sought to advance open science policy from its inception in a holistic and integrated way, covering all aspects of the research cycle from scientific discovery and review to sharing knowledge, publishing, and outreach. We present the steps taken with a forward-looking perspective on the challenges laying ahead, in particular the necessary change of the rewards and incentives system for researchers (for which various actors are co-responsible and which goes beyond the mandate of the European Commission). Finally, we discuss the role of artificial intelligence (AI) within an open science perspective
    • …
    corecore