1,945 research outputs found

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    Applications of AI, IoT, and Cloud Computing in Smart Transportation: A Review

    Get PDF
    Smart transportation systems have emerged as a promising solution for improving the efficiency, safety, and sustainability of transportation. The integration of emerging technologies such as Artificial Intelligence (AI), Internet of Things (IoT), and Cloud Computing has enabled the development of intelligent transportation systems that can optimize traffic flow, enhance driver safety, and reduce transportation costs. In this study, we conducted a systematic review of the literature to explore the applications of AI, IoT, and Cloud Computing in smart transportation systems. Our findings indicate that AI can be used for autonomous vehicles, traffic management, predictive maintenance, driver assistance, and demand forecasting. IoT can enable connected vehicles, real-time fleet management, smart parking, traffic monitoring, and remote diagnostics. Cloud Computing can facilitate vehicle-to-cloud communication, scalable infrastructure, data analytics, mobility-as-a-service, and predictive maintenance. The integration of these technologies can result in a comprehensive smart transportation system that can improve the overall efficiency of transportation systems. Our study provides insights for researchers, practitioners, and policymakers on the potential applications of AI, IoT, and Cloud Computing in smart transportation systems

    The role of Artificial Intelligence and distributed computing in IoT applications

    Get PDF
    [EN]The exchange of ideas between scientists and technicians, from both academic and business areas, is essential in order to ease the development of systems which can meet the demands of today’s society. Technology transfer in this field is still a challenge and, for that reason, this type of contributions are notably considered in this compilation. This book brings in discussions and publications concerning the development of innovative techniques of IoT complex problems. The technical program focuses both on high quality and diversity, with contributions in well-established and evolving areas of research. Specifically, 10 chapters were submitted to this book. The editors particularly encouraged and welcomed contributions on AI and distributed computing in IoT applications.Financed by regional government of Castilla y León and FEDER funds

    The role of Artificial Intelligence and Distributed computing in IoT applications

    Get PDF
    [ES] La serie «El rol de la inteligencia artificial y la computación distribuida en las aplicaciones IoT» contiene publicaciones sobre la teoría y aplicaciones de la computación distribuida y la inteligencia artificial en el Internet de las cosas. Prácticamente todas las disciplinas como la ingeniería, las ciencias naturales, la informática y las ciencias de la información, las TIC, la economía, los negocios, el comercio electrónico, el medio ambiente, la salud y las ciencias de la vida están cubiertas. La lista de temas abarca todas las áreas de los sistemas inteligentes modernos y la informática como: inteligencia computacional, soft computing incluyendo redes neuronales, inteligencia social, inteligencia ambiental, sistemas auto-organizados y adaptativos, computación centrada en el ser humano y centrada en el ser humano, sistemas de recomendación, control inteligente, robótica y mecatrónica, incluida la colaboración entre el ser humano y la máquina, paradigmas basados en el conocimiento, paradigmas de aprendizaje, ética de la máquina, análisis inteligente de datos, gestión del conocimiento, agentes inteligentes, toma de decisiones inteligentes y apoyo, seguridad de la red inteligente, gestión de la confianza, entretenimiento interactivo, inteligencia de la Web y multimedia. Las publicaciones en el marco de «El rol de la inteligencia artificial y la computación distribuida en las aplicaciones IoT» son principalmente las actas de seminarios, simposios y conferencias. Abarcan importantes novedades recientes en la materia, tanto de naturaleza fundacional como aplicable. Un importante rasgo característico de la serie es el corto tiempo de publicación. Esto permite una rápida y amplia difusión de los resultados de las investigaciones[EN] The series «The Role of Artificial Intelligence and Distributed Computing in IoT Applications» contains publications on the theory and applications of distributed computing and artificial intelligence in the Internet of Things. Virtually all disciplines such as engineering, natural sciences, computer and information sciences, ICT, economics, business, e-commerce, environment, health and life sciences are covered. The list of topics covers all areas of modern intelligent systems and computer science: computational intelligence, soft computing including neural networks, social intelligence, ambient intelligence, self-organising and adaptive systems, human-centred and people-centred computing, recommendation systems, intelligent control, robotics and mechatronics including human-machine collaboration, knowledge-based paradigms, learning paradigms, machine ethics, intelligent data analysis, knowledge management, intelligent agents, intelligent decision making and support, intelligent network security, trust management, interactive entertainment, web intelligence, and multimedia. The publications in the framework of «The Role of Artificial Intelligence and Distributed Computing in IoT Applications» are mainly the proceedings of seminars, symposia and conferences. They cover important recent developments in the field, whether of a foundational or applicable character. An important feature of the series is the short publication time. This allows for the rapid and wide dissemination of research results

    Forecasting Parking Lots Availability: Analysis from a Real-World Deployment

    Get PDF
    Smart parking technologies are rapidly being deployed in cities and public/private places around the world for the sake of enabling users to know in real time the occupancy of parking lots and offer applications and services on top of that information. In this work, we detail a real-world deployment of a full-stack smart parking system based on industrial-grade components. We also propose innovative forecasting models (based on CNN-LSTM) to analyze and predict parking occupancy ahead of time. Experimental results show that our model can predict the number of available parking lots in a ±3% range with about 80% accuracy over the next 1-8 hours. Finally, we describe novel applications and services that can be developed given such forecasts and associated analysis

    GECA: A Global Edge Computing Architecture

    Get PDF
    [EN]The smart scenarios are in continuous advance thanks to the group of devices that are always connected to Internet. In the last 10 years this phenomenon has been called Internet of Things (IoT). The adoption of the IoT to generate these intelligent scenarios or smart has motivated that governments, universities, research centers or companies are in constant evolution to face the challenges brought by the deployment of IoT platforms. Its disruption in all environments generates large volumes of data, requirements by users for their applications to respond in real time, but with low bandwidth or power consumption, and without delays. The challenges presented by the development of applications for the IoT has occasioned the emergence of technologies such as Edge Computing. This paper presents GECA: A Global Edge Computing Architecture, an architecture based on Edge Computing, which has been deployed in smart farming and smart energy scenarios, with the aim of demonstrating that it is possible to reduce latency, energy consumption and bandwidth costs and integrate Edge computing in IoT platforms

    Windy Rural Collaborative Postmen Problem using ROS as Multi-agent System Architecture

    Get PDF
    [EN]In the last decades the urban areas have grown and as a result the transportation has become an important problem. We are exploring a potential solution for the last mile delivery problem in urban areas in a similar way that internet solves the delivery of information proble
    • …
    corecore