11,319 research outputs found

    Handling inconsistency on ontologies through a generalized dynamic argumentation framework

    Get PDF
    In this article we present a generalized dynamic argumentation framework that handles arguments expressed in an abstract language assumed to be some first order logic fragment. Once the formalism is presented, we propose a reification to the description logic ALC with the intention to handle ontology debugging. In this sense, since argumentation frameworks reason over graphs that relate arguments through attack, our methodology is proposed to bridge ontological inconsistency sources to attack relations in argumentation. Finally, an argumentation semantics is proposed as a consistency restoration tool to cope with the ontology debugging.Workshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    Combining Norms, Roles, Dependence and Argumentation in Agreement Technologies

    Get PDF
    A major challenge for Agreement Technologies is the combination of existing technologies and rea- soning methods. In this paper we focus on the three core layers of the Agreement Technologies tower, called Norms, Organization and Argumentation. We present a framework for arguing about agreements based on norms, roles and dependence, together with a case study from the sharing economy

    A finer grained modeling of rational coalitions using goals

    Get PDF
    We propose an extension of Coalitional ATL (a logic for reasoning about coalitions and their formation process, see [10]) by goals. This goal framework allows for a finer grained modeling of coalitions: Coalitional frameworks, based on Dungs’s abstract argumentation framework, are used to point out conflicts between agents, and goals refer to agents’ subjective incentives to join (or not to join) coalitions. We focus on two different aspects for cooperation allowing a more practical modeling of systemsWorkshop de Agentes y Sistemas Inteligentes (WASI)Red de Universidades con Carreras en Informática (RedUNCI

    Research Challenges for Argumentation

    Get PDF

    Coalitions of Arguments: An Approach with Constraint Programming

    Get PDF
    The aggregation of generic items into coalitions leads to the creation of sets of homogenous entities. In this paper we accomplish this for an input set of arguments, and the result is a partition according to distinct lines of thought, i.e., groups of "coherent" ideas. We extend Dung\u27s Argumentation Framework (AF) in order to deal with coalitions of arguments. The initial set of arguments is partitioned into not-intersected subsets. All the found coalitions show the same property inherited by Dung, e.g., all the coalitions in the partition are admissible (or conflict-free, complete, stable): they are generated according to Dung\u27s principles. Each of these coalitions can be assigned to a different agent. We use Soft Constraint Programming as a formal approach to model and solve such partitions in weighted AFs: semiring algebraic structures can be used to model different optimization criteria for the obtained coalitions. Moreover, we implement and solve the presented problem with JaCoP, a Java constraint solver, and we test the code over a small-world network

    Collaboration in the Semantic Grid: a Basis for e-Learning

    Get PDF
    The CoAKTinG project aims to advance the state of the art in collaborative mediated spaces for the Semantic Grid. This paper presents an overview of the hypertext and knowledge based tools which have been deployed to augment existing collaborative environments, and the ontology which is used to exchange structure, promote enhanced process tracking, and aid navigation of resources before, after, and while a collaboration occurs. While the primary focus of the project has been supporting e-Science, this paper also explores the similarities and application of CoAKTinG technologies as part of a human-centred design approach to e-Learning

    Strength in coalitions: Community detection through argument similarity

    Get PDF
    We present a novel argumentation-based method for finding and analyzing communities in social media on the Web, where a community is regarded as a set of supported opinions that might be in conflict. Based on their stance, we identify argumentative coalitions to define them; then, we apply a similarity-based evaluation method over the set of arguments in the coalition to determine the level of cohesion inherent to each community, classifying them appropriately. Introducing conflict points and attacks between coalitions based on argumentative (dis)similarities to model the interaction between communities leads to considering a meta-argumentation framework where the set of coalitions plays the role of the set of arguments and where the attack relation between the coalitions is assigned a particular strength which is inherited from the arguments belonging to the coalition. Various semantics are introduced to consider attacks' strength to particularize the effect of the new perspective. Finally, we analyze a case study where all the elements of the formal construction of the formalism are exercised.Fil: Budan, Paola Daniela. Universidad Nacional de Santiago del Estero. Facultad de Cs.exactas y Tecnologías. Departamento de Informatica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional de Santiago del Estero. Facultad de Cs.exactas y Tecnologias. Instituto de Investigacion En Informatica y Sistemas de Informacion.; ArgentinaFil: Escañuela Gonzalez, Melisa Gisselle. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Exactas y Tecnologías. Departamento de Matemática; Argentina. Universidad Nacional de Santiago del Estero. Facultad de Cs.exactas y Tecnologias. Instituto de Investigacion En Informatica y Sistemas de Informacion.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Budan, Maximiliano Celmo David. Universidad Nacional de Santiago del Estero. Facultad de Cs.exactas y Tecnologias. Instituto de Investigacion En Informatica y Sistemas de Informacion.; Argentina. Universidad Nacional de Santiago del Estero. Facultad de Ciencias Exactas y Tecnologías. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentin

    Imperial College Computing Student Workshop

    Get PDF

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid
    corecore