5,024 research outputs found

    Case-based argumentation infrastructure for agent societies

    Full text link
    In this work, we propose an infrastructure to develop and execute argumentative agents in an open multi-agent system. This infrastructure offers the necessary components to develop agents with argumentation capabilities, including the communication skills and the argumentation protocol, and it offers support for agent societies and their agents' social context. The main advantage of having this infrastructure is that it is possible to create agents with argumentation capabilities to resolve a specified problem. In the argumentation dialogue the agents try to reach an agreement about the best solution to apply for each proposed problem. The proposed infrastructure has been validated with a real example and it has been evaluated obtaining, with argumentation strategies, better performance than other reasoning approaches that do not include argumentation.Jordán Prunera, JM. (2011). Case-based argumentation infrastructure for agent societies. http://hdl.handle.net/10251/15362Archivo delegad

    Case-Based Argumentation in Agent Societies

    Full text link
    Hoy en día los sistemas informáticos complejos se pueden ven en términos de los servicios que ofrecen y las entidades que interactúan para proporcionar o consumir dichos servicios. Los sistemas multi-agente abiertos, donde los agentes pueden entrar o salir del sistema, interactuar y formar grupos (coaliciones de agentes u organizaciones) de forma dinámica para resolver problemas, han sido propuestos como una tecnología adecuada para implementar este nuevo paradigma informático. Sin embargo, el amplio dinamismo de estos sistemas requiere que los agentes tengan una forma de armonizar los conflictos que surgen cuando tienen que colaborar y coordinar sus actividades. En estas situaciones, los agentes necesitan un mecanismo para argumentar de forma eficiente (persuadir a otros agentes para que acepten sus puntos de vista, negociar los términos de un contrato, etc.) y poder llegar a acuerdos. La argumentación es un medio natural y efectivo para abordar los conflictos y contradicciones del conocimiento. Participando en diálogos argumentativos, los agentes pueden llegar a acuerdos con otros agentes. En un sistema multi-agente abierto, los agentes pueden formar sociedades que los vinculan a través de relaciones de dependencia. Estas relaciones pueden surgir de sus interacciones o estar predefinidas por el sistema. Además, los agentes pueden tener un conjunto de valores individuales o sociales, heredados de los grupos a los que pertenecen, que quieren promocionar. Las dependencias entre los agentes y los grupos a los que pertenecen y los valores individuales y sociales definen el contexto social del agente. Este contexto tiene una influencia decisiva en la forma en que un agente puede argumentar y llegar a acuerdos con otros agentes. Por tanto, el contexto social de los agentes debería tener una influencia decisiva en la representación computacional de sus argumentos y en el proceso de gestión de argumentos.Heras Barberá, SM. (2011). Case-Based Argumentation in Agent Societies [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/12497Palanci

    An Ontological-based Knowledge-Representation Formalism for Case-Based Argumentation

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10796-014-9524-3[EN] In open multi-agent systems, agents can enter or leave the system, interact, form societies, and have dependency relations with each other. In these systems, when agents have to collaborate or coordinate their activities to achieve their objectives, their different interests and preferences can come into conflict. Argumentation is a powerful technique to harmonise these conflicts. However, in many situations the social context of agents determines the way in which agents can argue to reach agreements. In this paper, we advance research in the computational representation of argumentation frameworks by proposing a new ontologicalbased, knowledge-representation formalism for the design of open MAS in which the participating software agents are able to manage and exchange arguments with each other taking into account the agents’ social context. This formalism is the core of a case-based argumentation framework for agent societies. In addition, we present an example of the performance of the formalism in a real domain that manages the requests received by the technicians of a call centre.This work is supported by the Spanish government grants [CONSOLIDER-INGENIO 2010 CSD2007-00022, TIN2011-27652-C03-01, and TIN2012-36586-C03-01] and by the GVA project [PROMETEO II/2013/019].Heras Barberá, SM.; Botti, V.; Julian Inglada, VJ. (2014). An Ontological-based Knowledge-Representation Formalism for Case-Based Argumentation. Information Systems Frontiers. 1-20. https://doi.org/10.1007/s10796-014-9524-3S120Amgoud, L. (2005). An argumentation-based model for reasoning about coalition structures. In 2nd international workshop on argumentation in multi-agent systems, argmas-05(pp. 1–12). Springer.Amgoud, L., Dimopolous, Y., Moraitis, P. (2007). A unified and general framework for argumentation-based negotiation. In 6th international joint conference on autonomous agents and multiagent systems, AAMAS-07. IFAAMAS.Atkinson, K., & Bench-Capon, T. (2008). Abstract argumentation scheme frameworks. In Proceedings of the 13th international conference on artificial intelligence: methodology, systems and applications, AIMSA-08, lecture notes in artificial intelligence (Vol. 5253, pp. 220–234). Springer.Aulinas, M., Tolchinsky, P., Turon, C., Poch, M., Cortés, U. (2012). Argumentation-based framework for industrial wastewater discharges management. Engineering Applications of Artificial Intelligence, 25(2), 317–325.Bench-Capon, T., & Atkinson, K. (2009). Argumentation in artificial intelligence, chap. abstract argumentation and values (pp. 45–64). Springer.Bench-Capon, T., & Sartor, G. (2003). A model of legal reasoning with cases incorporating theories and values. Artificial Intelligence, 150(1-2), 97–143.Bulling, N., Dix, J., Chesñevar, C.I. (2008). Modelling coalitions: ATL + argumentation. In Proceedings of the 7th international joint conference on autonomous agents and multiagent systems, AAMAS-08 (Vol. 2, pp. 681–688). ACM Press.Chesñevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M., Vreeswijk, G., Willmott, S. (2006). Towards an argument interchange format. The Knowledge Engineering Review, 21(4), 293–316.Diaz-Agudo, B., & Gonzalez-Calero, P.A. (2007). Ontologies: A handbook of principles, concepts and applications in information systems, integrated series in information systems, chap. an ontological approach to develop knowledge intensive cbr systems (Vol. 14, pp. 173–214). Springer.Dung, P.M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and N -person games. Artificial Intelligence, 77, 321–357.Ferber, J., Gutknecht, O., Michel, F. (2004). From agents to organizations: An organizational view of multi-agent systems. In Agent-oriented software engineering VI, LNCS (Vol. 2935, pp. 214–230.) Springer-Verlag.Hadidi, N., Dimopolous, Y., Moraitis, P. (2010). Argumentative alternating offers. In 9th international conference on autonomous agents and multiagent systems, AAMAS-10 (pp. 441–448). IFAAMAS.Heras, S., Atkinson, K., Botti, V., Grasso, F., Julián, V., McBurney, P. (2010). How argumentation can enhance dialogues in social networks. In Proceedings of the 3rd international conference on computational models of argument, COMMA-10, frontiers in artificial intelligence and applications (Vol. 216, pp. 267–274). IOS Press.Heras, S., Botti, V., Julián, V. (2011). On a computational argumentation framework for agent societies. In Argumentation in multi-agent systems (pp. 123–140). Springer.Heras, S., Botti, V., Julián, V. (2012). Argument-based agreements in agent societies. Neurocomputing, 75(1), 156–162.Heras, S., Jordán, J., Botti, V., Julián, V. (2013). Argue to agree: A case-based argumentation approach. International Journal of Approximate Reasoning, 54(1), 82–108.Jordán, J., Heras, S., Julián, V. (2011). A customer support application using argumentation in multi-agent systems. In 14th international conference on information fusion (FUSION-11) (pp. 772– 778).Karunatillake, N.C. (2006). Argumentation-based negotiation in a social context. Ph.D. thesis, School of Electronics and Computer Science, University of Southampton, UK.Karunatillake, N.C., Jennings, N.R., Rahwan, I., McBurney, P. (2009). Dialogue games that agents play within a society. Artificial Intelligence, 173(9-10), 935–981.Kraus, S., Sycara, K., Evenchik, A. (1998). Reaching agreements through argumentation: a logical model and implementation. Artificial Intelligence, 104, 1–69.López de Mántaras, R., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw, S., Faltings, B., Maher, M.L., Cox, M., Forbus, K., Keane, M., Watson, I. (2006). Retrieval, reuse, revision, and retention in CBR. The Knowledge Engineering Review, 20(3), 215–240.Luck, M., & McBurney, P. (2008). Computing as interaction: Agent and agreement technologies. In IEEE international conference on distributed human-machine systems. IEEE Press.Oliva, E., McBurney, P., Omicini, A. (2008). Co-argumentation artifact for agent societies. In 5th international workshop on argumentation in multi-agent systems, Argmas-08 (pp. 31–46). Springer.Ontañón, S., & Plaza, E. (2007). Learning and joint deliberation through argumentation in multi-agent systems. In 7th international conference on agents and multi-agent systems, AAMAS-07. ACM Press.Ontañón, S., & Plaza, E. (2009). Argumentation-based information exchange in prediction markets. In Argumentation in multi-agent systems, LNAI (vol. 5384, pp. 181–196). Springer.Parsons, S., Sierra, C., Jennings, N.R. (1998). Agents that reason and negotiate by arguing. Journal of Logic and Computation, 8(3), 261–292.Prakken, H. (2010). An abstract framework for argumentation with structured arguments. Argument and Computation, 1, 93–124.Prakken, H., Reed, C., Walton, D. (2005). Dialogues about the burden of proof. In Proceedings of the 10th international conference on artificial intelligence and law, ICAIL-05 (pp. 115–124). ACM Press.Sierra, C., Botti, V., Ossowski, S. (2011). Agreement computing. KI - Künstliche Intelligenz 10.1007/s13218-010-0070-y .Soh, L.K., & Tsatsoulis, C. (2005). A real-time negotiation model and a multi-agent sensor network implementation. Autonomous Agents and Multi-Agent Systems, 11(3), 215–271.Walton, D., Reed, C., Macagno, F. (2008). Argumentation schemes. Cambridge University Press.Wardeh, M., Bench-Capon, T., Coenen, F.P. (2008). PISA - pooling information from several agents: Multiplayer argumentation from experience. In Proceedings of the 28th SGAI international conference on artificial intelligence, AI-2008 (pp. 133–146). Springer.Wardeh, M., Bench-Capon, T., Coenen, F.P. (2009). PADUA: A protocol for argumentation dialogue using association rules. AI and Law, 17(3), 183–215.Wardeh, M., Coenen, F., Bench-Capon, T. (2010). Arguing in groups. In 3rd international conference on computational models of argument, COMMA-10 (pp. 475–486). IOS Press.Willmott, S., Vreeswijk, G., Chesñevar, C., South, M., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G. (2006). Towards an argument interchange format for multi-agent systems. In 3rd international workshop on argumentation in multi-agent systems, ArgMAS-06 (pp. 17–34). Springer.Wyner, A., & Schneider, J. (2012). Arguing from a point of view. In Proceedings of the first international conference on agreement technologies

    An Infrastructure for Argumentative Agents

    Full text link
    Multiagent systems are suitable for providing a framework that allows agents to perform collaborative processes in a social context. Furthermore, argumentation is a natural way of reaching agreements between several parties. However, it is difficult to find infrastructures of argumentation offering support for agent societies and their social context. Offering support for agent societies allows representation of more realistic environments to have argumentation dialogues. We propose an infrastructure to develop and execute argumentative agents in an open multiagent system. It offers tools to develop agents with argumentation capabilities. It also offers support for agent societies and their social context. The infrastructure is publicly available. Also, it has been implemented in an application scenario where argumentative agents try to reach an agreement about the best solution to solve a problem reported to the system.This work is supported by the Spanish government grants CONSOLIDER INGENIO 2010 CSD2007-00022, MINECO/FEDER TIN2012-36586-C03-01, and TIN2011-27652-C03-01.Jordan Prunera, JM.; Heras Barberá, SM.; Valero Cubas, S.; Julian Inglada, VJ. (2014). An Infrastructure for Argumentative Agents. Computational Intelligence. 31(3):418-441. doi:10.1111/coin.12030S41844131

    Argue to agree: A case-based argumentation approach

    Full text link
    [EN] The capability of reaching agreements is a necessary feature that large computer systems where agents interoperate must include. In these systems, agents represent self-motivated entities that have a social context, including dependency relations among them, and different preferences and beliefs. Without agreement there is no cooperation and thus, complex tasks which require the interaction of agents with different points of view cannot be performed. In this work, we propose a case-based argumentation approach for Multi-Agent Systems where agents reach agreements by arguing and improve their argumentation skills from experience. A set of knowledge resources and a reasoning process that agents can use to manage their positions and arguments are presented. These elements are implemented and validated in a customer support application.This work is supported by the Spanish government grants [CONSOLIDER-INGENIO 2010 CSD2007-00022, TIN2008-04446, and TIN2009-13839-C03-01] and by the GVA project [PROMETEO 2008/051].Heras Barberá, SM.; Jordán Prunera, JM.; Botti, V.; Julian Inglada, VJ. (2013). Argue to agree: A case-based argumentation approach. International Journal of Approximate Reasoning. 54(1):82-108. https://doi.org/10.1016/j.ijar.2012.06.005S8210854

    Case-Based Argumentation Framework. Strategies

    Full text link
    In agent societies, agents perform complex tasks that require different levels of intelligence and give rise to interactions among them. From these interactions, conflicts of opinion can arise, specially when MAS become adaptive and open with heterogeneous agents dynamically entering in or leaving the system. Therefore, software agents willing to participate in this type of systems will require to include extra capabilities to explicitly represent and generate agreements on top of the simpler ability to interact. In addition, agents can take advantage of previous argumentation experiences to follow dialogue strategies and easily persuade other agents to accept their opinions. Our insight is that CBR can be very useful to manage argumentation in open MAS and devise argumentation strategies based on previous argumentation experiences. To demonstrate the foundations of this suggestion, this report presents the work that we have done to develop case-based argumentation strategies in agent societies. Thus, we propose a case-based argumentation framework for agent societies and define heuristic dialogue strategies based on it. The framework has been implemented and evaluated in a real customer support application.Heras Barberá, SM.; Botti Navarro, VJ.; Julian Inglada, VJ. (2011). Case-Based Argumentation Framework. Strategies. http://hdl.handle.net/10251/1109

    Case-Based strategies for argumentation dialogues in agent societies

    Full text link
    [EN] In multi-agent systems, agents perform complex tasks that require different levels of intelligence and give rise to interactions among them. From these interactions, conflicts of opinion can arise, especially when these systems become open, with heterogeneous agents dynamically entering or leaving the system. Therefore, agents willing to participate in this type of system will be required to include extra capabilities to explicitly represent and generate agreements on top of the simpler ability to interact. Furthermore, agents in multiagent systems can form societies, which impose social dependencies on them. These dependencies have a decisive influence in the way agents interact and reach agreements. Argumentation provides a natural means of dealing with conflicts of interest and opinion. Agents can reach agreements by engaging in argumentation dialogues with their opponents in a discussion. In addition, agents can take advantage of previous argumentation experiences to follow dialogue strategies and persuade other agents to accept their opinions. Our insight is that case-based reasoning can be very useful to manage argumentation in open multi-agent systems and devise dialogue strategies based on previous argumentation experiences. To demonstrate the foundations of this suggestion, this paper presents the work that we have done to develop case-based dialogue strategies in agent societies. Thus, we propose a case-based argumentation framework for agent societies and define heuristic dialogue strategies based on it. The framework has been implemented and evaluated in a real customer support application.This work is supported by the Spanish Government Grants [CONSOLIDER-INGENIO 2010 CSD2007-00022, and TIN2012-36586-C03-01] and by the GVA project [PROMETEO 2008/051].Heras Barberá, SM.; Jordan Prunera, JM.; Botti, V.; Julian Inglada, VJ. (2013). Case-Based strategies for argumentation dialogues in agent societies. Information Sciences. 223:1-30. doi:10.1016/j.ins.2012.10.007S13022

    Using the event calculus for tracking the normative state of contracts

    Get PDF
    In this work, we have been principally concerned with the representation of contracts so that their normative state may be tracked in an automated fashion over their deployment lifetime. The normative state of a contract, at a particular time, is the aggregation of instances of normative relations that hold between contract parties at that time, plus the current values of contract variables. The effects of contract events on the normative state of a contract are specified using an XML formalisation of the Event Calculus, called ecXML. We use an example mail service agreement from the domain of web services to ground the discussion of our work. We give a characterisation of the agreement according to the normative concepts of: obligation, power and permission, and show how the ecXML representation may be used to track the state of the agreement, according to a narrative of contract events. We also give a description of a state tracking architecture, and a contract deployment tool, both of which have been implemented in the course of our work.

    Case-Based Argumentation Framework. Reasoning Process

    Full text link
    The capability of reaching agreements is a necessary feature that large computer systems where agents interoperate must include. In these systems, agents represent self-motivated entities that have a social context, including dependency relations among them, and different preferences and beliefs. Without agreement there is no cooperation and thus, complex tasks which require the interaction of agents with different points of view cannot be performed. In this work, we follow a case-based argumentation approach for the design and implementation of Multi-Agent Systems where agents reach agreements by arguing and improve their argumentation skills from experience. A set of knowledge resources and a reasoning process that agents can use to manage their positions and arguments are presented.Heras Barberá, SM.; Botti Navarro, VJ.; Julian Inglada, VJ. (2011). Case-Based Argumentation Framework. Reasoning Process. http://hdl.handle.net/10251/1109
    corecore