115 research outputs found

    Low-Power and High-Performance Drivers for OLEDoS Microdisplays

    Get PDF
    The rapid growth of the microdisplay market, driven by the demand for smartwatches, head-mounted displays in Virtual Reality (VR) and Augmented Reality (AR), and other portable devices, has presented a need to enhance their energy efficiency. This thesis focuses on reducing the power and energy consumption of microdisplays while maintaining display luminance, and image quality; and enhancing key features such as resolution, refresh rate, and color depth. First, a novel driving method and pixel circuit are proposed that reduces the number of subframes in a digitally-driven display. The dual-driver method offers flexibility in different design modes, allowing for the enhancement of various display characteristics. In the low-power mode, the operating frequency is reduced, resulting in decreased dynamic power consumption by the drivers. Experimental results on a proof-of-concept array fabricated using TSMC 65 nm technology demonstrate a significant 39% reduction in power consumption compared to a conventional array. Furthermore, designing the display in other modes yields remarkable improvements, with up to 8.5 times enhancement in refresh rate or resolution. In addition, the high color depth mode presents an opportunity to increase color depth from 8 bits to 14 bits, enhancing the visual experience. Additionally, this thesis investigates power reduction techniques specific to row drivers in microdisplays. Circuit techniques are proposed to recycle energy in the row driver, thereby reducing dynamic power consumption. Measurement results on proof-of-concept arrays implemented in TSMC 65 nm technology reveal substantial reductions of up to 30% in the power consumption of the row driver using different energy recycling techniques. Applying these techniques led to a significant reduction in the dynamic power consumption of the row driver. For instance, employing the direct energy restoration technique resulted in a remarkable decrease of over 45% in the dynamic power consumption of the row driver. Finally, a digital data driver with a data energy recycling feature is presented to further reduce the dynamic power consumption of microdisplays. Measurement results obtained from a proof-of-concept array fabricated using TSMC 65 nm technology demonstrate an average power consumption reduction of 16% in the display’s data driver when subjected to randomly generated test images. This thesis addresses the pressing need for energy-efficient microdisplays, offering innovative driving methods, pixel circuit design, and dynamic power reduction techniques. The proposed solutions provide significant power savings while preserving display quality and enabling enhancements in resolution, refresh rate, and color depth, contributing to extended battery life and improved user experience in portable electronic systems

    An Ultra Low Power Digital to Analog Converter Optimized for Small Format LCD Applications

    Get PDF
    Liquid crystal displays (LCDs) for mobile applications present a unique design challenge. These small format displays can be found primarily in cell phones and PDAs which are devices that have particularly stringent power requirements. At the same time, the displays are increasing in resolution with every generation. This is creating demand for new LCD display technologies. The predominant amorphous thin film transistor technology is no longer feasible in the new high resolution small format screens due to the fact that the displays require too many connections to the driver and the aperture ratios do not allow high density displays. New technologies such as low temperature polysilicon (LTPS) displays continue to shrink in size and increase in resolution. LTPS technology enables the display manufacturer to create relatively high quality transistors on the glass. This allows for a display architecture which integrates the gate driver on the glass. Newer LTPS LCDs also enable a high level of multiplexing the sources lines on the glass which allows for a much simpler connection to the display driver chip. The electronic drivers for these display applications must adhere to strict power and area budgets. This work describes a low-power, area efficient, scalable, digital-to-analog conversion (DAC) integrated circuit architecture optimized for driving small format LCDs. The display driver is based on a twelve channel, 9-bit DAC driver. This architecture, suitable for % VGA resolution displays, exhibited a 2 MSPS conversion rate, less than 300 pW power dissipation per channel using a 5 V supply, and a die area of 0.042 mm per DAC. A new performance standard is set for DAC display drivers in joules per bit areal density

    Backplane Circuit Design with Amorphous Silicon Thin-Film Transistors for Flexible Displays

    Get PDF
    In recent years, rapid advancement in LED fabrication has enabled the possibility of using GaN micro-LEDs to be the light media in a display panel. It has superior performance in many aspects when compared with OLED technology, such as high contrast, wide viewing angle, and low power consumption. These advantages have enabled a possibility of using micro-LED technology to realize flexible displays. Currently, OLEDs need high mobility low-temperature-poly-silicon (LTPS) TFTs to be the backplane driving circuit material because lower mobility TFTs are inadequate to drive OLEDs. However, LTPS TFTs have poor uniformity over a large area due to unpredictable grain sizes and require additional fabrication processes which prevent it from being integrated onto a large-area flexible platform. On the other hand, conventional amorphous silicon (a-Si:H) technology used on LCD panels have an edge in terms of uniformity over large-area and low-cost fabrication. Even though the field-effect mobility of a-Si:H TFTs is much less than LTPS technology, it is sufficient to power up micro-LEDs with decent pixel density, which is impossible with OLEDs. However, the nature of amorphous materials gives rise to electrical instability issues. The output current of a-Si:H TFTs gradually decreases over time under electrical stress, which results in dimmer micro-LEDs in pixels. Moreover, the lack of complementary p-type TFTs in a-Si:H limits the integration of driver and control circuits onto the flexible platform to realize a full "system-on-flex". To overcome such shortcomings of a-Si:H technologies, this thesis makes a contribution in providing a solution to compensate the output current degradation by a novel pixel circuit with simple control scheme, as well as bootstrapped logic circuits that can be used as row driver and control circuits on flexible substrates. The proposed compensation pixel and row driver circuits can be combined to facilitate the realization of a "system-on-flex" backplane for a display panel with a-Si:H and micro-LED technologies

    Review of Display Technologies Focusing on Power Consumption

    Get PDF
    Producción CientíficaThis paper provides an overview of the main manufacturing technologies of displays, focusing on those with low and ultra-low levels of power consumption, which make them suitable for current societal needs. Considering the typified value obtained from the manufacturer’s specifications, four technologies—Liquid Crystal Displays, electronic paper, Organic Light-Emitting Display and Electroluminescent Displays—were selected in a first iteration. For each of them, several features, including size and brightness, were assessed in order to ascertain possible proportional relationships with the rate of consumption. To normalize the comparison between different display types, relative units such as the surface power density and the display frontal intensity efficiency were proposed. Organic light-emitting display had the best results in terms of power density for small display sizes. For larger sizes, it performs less satisfactorily than Liquid Crystal Displays in terms of energy efficiency.Junta de Castilla y León (Programa de apoyo a proyectos de investigación-Ref. VA036U14)Junta de Castilla y León (programa de apoyo a proyectos de investigación - Ref. VA013A12-2)Ministerio de Economía, Industria y Competitividad (Grant DPI2014-56500-R

    Energy efficient LED displays

    Full text link
    In this research work, an innovative pixel architecture RGBW, consisting of red (R), green (G), blue (B), and white (W) LEDs, is designed and implemented for color generation. Energy consumption of new pixel architecture consisting of RGBW LEDs is compared to standard architecture consisting of RGB LEDs. Human perception experiments are conducted to study the differences in perception between the two architectures when the same colors are generated using RGBW vs. RGB. Measurements of power for a 32inch x 16inch LED display has proved up to 18% power savings for low saturated colors, up to 8% for high saturated colors and up to 30% for white color using RGBW as a substitute. In addition, experiments on human perception have shown that majority of test subjects could not differentiate between most colors displayed using RGB and RGBW showing that RGBW is an excellent substitute for RGB. Statistic analysis has shown that 90% of test subjects found the colors to be the same, whereas 86% test subjects found the intensities of the colors to be the same

    Hardware and Software Design of a Wireless Electronic Controller for Digital Slot Car Applications

    Get PDF
    The main objectives of this Master of Science Thesis project are the design, development and implementation of an innovative wireless electronic controller for digital slot car applications. A slot vehicle is an electrical powered model that is guided by a groove or slot in the track on which it runs. The slot controller designed allows an accurate control of the change lane, brake and throttle actions in slot vehicles and it resolves the present problems of commercial slot car controllers. This project focuses on the complete development of the electronic hardware interface dedicated to control digital slot vehicles. The development was performed using an elec-tronic platform that combines a low cost and high performance microcontroller, which is equipped with conditioning electronics necessary to achieve the adjustment of slot vehi-cles parameters. The control interface, conditioning electronics and the necessary elec-tronics for wireless communication are topics to considerer. The development of the system software is also broached in this project, which is re-sponsible for providing different driving modes possibilities for users depending on the performance required by the characteristics of each slot racing circuit. For this develop-ment, the main slot car controllers on the market have been analysed and the most com-mon components in the multifunction control units of the circuits to perform a design that implements a microcontroller, which gives intelligence and enables to have an ad-vanced control in digital slot car systems. The complexity of the project carried out is clear because it involves starting from scratch in research and the use of a large number of knowledge of different subjects and the real demonstration of proper operation. It is noteworthy that despite develop a good theoretical basis of the problem to be solved, its proper functioning in practise presents additional difficulties with respect to the theoretical model developed. The results have been satisfactory to achieve the proposed tasks from the beginning. The slot controller has a colour screen that provides an intuitive interface with the placement of the push buttons. The wireless communication allows more independence and differ-ent driving modes give to the controller new features never seen in previous slot car sys-tems. The best reward is the development of a Master’s Thesis project that has interest to the people

    Wireless electronic controller for digital slot car applications : hardware and software design of the product

    Get PDF
    The main objectives of this Master of Science Thesis project are the design, develop-ment and implementation of an innovative wireless electronic controller for digital slot car applications. A slot vehicle is an electrical powered model that is guided by a groove or slot in the track on which it runs. The slot controller designed allows an accurate con-trol of the change lane, brake and throttle actions in slot vehicles and it resolves the pre-sent problems of commercial slot car controllers. This project focuses on the complete development of the electronic hardware interface dedicated to control digital slot vehicles. The development was performed using an electronic platform that combines a low cost and high performance microcontroller, which is equipped with conditioning electronics necessary to achieve the adjustment of slot vehicles parameters. The control interface, conditioning electronics and the neces-sary electronics for wireless communication are topics to considerer. The development of the system software is also broached in this project, which is re-sponsible for providing different driving modes possibilities for users depending on the performance required by the characteristics of each slot racing circuit. For this devel-opment, the main slot car controllers on the market have been analysed and the most common components in the multifunction control units of the circuits to perform a de-sign that implements a microcontroller, which gives intelligence and enables to have an advanced control in digital slot car systems. The complexity of the project carried out is clear because it involves starting from scratch in research and the use of a large number of knowledge of different subjects and the real demonstration of proper operation. It is noteworthy that despite develop a good theoretical basis of the problem to be solved, its proper functioning in practise presents additional difficulties with respect to the theoretical model developed. The results have been satisfactory to achieve the proposed tasks from the beginning. The slot controller has a colour screen that provides an intuitive interface with the placement of the push buttons. The wireless communication allows more independence and different driving modes give to the controller new features never seen in previous slot car systems. The best reward is the development of a Master’s Thesis project that has interest to the people.Escuela Técnica Superior de Ingeniería IndustrialUniversidad Politécnica de Cartagen

    LAPSE: Low-Overhead Adaptive Power Saving and Contrast Enhancement for OLEDs

    Get PDF
    Organic Light Emitting Diode (OLED) display panels are becoming increasingly popular especially in mobile devices; one of the key characteristics of these panels is that their power consumption strongly depends on the displayed image. In this paper we propose LAPSE, a new methodology to concurrently reduce the energy consumed by an OLED display and enhance the contrast of the displayed image, that relies on image-specific pixel-by-pixel transformations. Unlike previous approaches, LAPSE focuses specifically on reducing the overheads required to implement the transformation at runtime. To this end, we propose a transformation that can be executed in real time, either in software, with low time overhead, or in a hardware accelerator with a small area and low energy budget. Despite the significant reduction in complexity, we obtain comparable results to those achieved with more complex approaches in terms of power saving and image quality. Moreover, our method allows to easily explore the full quality-versus-power tradeoff by acting on a few basic parameters; thus, it enables the runtime selection among multiple display quality settings, according to the status of the system

    Real-time audio spectrum analyser research, design, development and implementation using the 32 bit ARMR Cortex-M4 microcontroller

    Get PDF
    This thesis describes the design and testing of a low-cost hand-held real-time audio analyser (RTAA). This includes the design of an embedded system, the development of the firmware executed by the embedded system, and the implementation of a real-time signal processing algorithms. One of the objectives of this project was to design an alternative low-cost audio analyser to the current commercially available solutions. The device was tested with the audio standard test signal (pink noise) and was compared to the expected at-spectrum response corresponding to a balanced audio system. The design makes use of an 32-bit Reduced Instruction Set Computer (RISC) processor core (ARM Cortex-M4), namely the STM32F4 family of microcontrollers. Due to the pin compatibility of the microcontroller (designed and manufactured by STMicroelectronics), the new development board can also be upgraded with the newly released Cortex-M7 microcontroller, namely the STM32F7 family of microcontrollers. Moreover, the low-cost hardware design features 256kB Random Access Memory (RAM); on-board Micro-Electro-Mechanical System (MEMS) microphone; on-chip 12-bit Analogue-to-Digital (A/D) and Digital-to-Analogue (D/A) Converters; 3.2" Thin-Film-Transistor Liquid-Crystal Display (TFT-LCD) with a resistive touch screen sensor and SD-Card Socket. Furthermore, two additional expansion modules were designed and can extend the functionality of the designed real-time audio analyser. Firstly, an audio/video module featuring a professional 24-bit 192kHz sampling rate audio CODEC; balanced audio microphone input; unbalanced line output; three MEMS microphone inputs; headphone output; and a Video Graphics Array (VGA) controller allowing the display of the analysed audio spectrum on either a projector or monitor. The second expansion module features two external memories: 1MB Static Random Access Memory (SRAM) and 16MB Synchronous Dynamic Random Access Memory (SDRAM). While the two additional expansion modules were not completely utilised by the firmware presented in this thesis, upgrades of the real-time audio analyser firmware in future revisions will provide a higher performing and more accurate analysis of the audio spectrum. The full research and design process for the real-time audio analyser is discussed and both Problems and pitfalls with the final implemented design are highlighted and possible resolutions were investigated. The development costs (excluding labour) are given in the form of a bill of materials (BOM) with the total costs averaging around R1000. Moreover, the additional VGA controller could further decrease the overall costs with the removal of the TFT-LCD screen from the audio analyser and provided the external display was not included in the BOM

    FINE-GRAINED DYNAMIC VOLTAGE SCALING ON OLED DISPLAY

    Get PDF
    Organic Light Emitting Diode (OLED) has emerged as a new generation of display techniques for mobile devices. Emitting light with organic fluorescent materials OLED display panels are thinner, brighter, lighter, cheaper and more power efficient, compared to other display technologies such as Liquid Crystal Displays (LCD). In present mobile devices, due to the battery capacity limitation and increasing daily usage, the power efficiency significantly affect the general performance and user experience. However, display panel even built with OLEDs is still the biggest contributor to a mobile device’s total power consumption. In this thesis, a fine-grained dynamic voltage scaling (FDVS) technique is proposed to reduce the OLED display power consumption. In bottom level, based on dynamic voltage scaling (DVS) power optimization, a DVS-friendly AMOLED driver design is proposed to enhance the color accuracy of the OLED pixels under scaled down supply voltage. Correspondingly, the OLED panel is partitioned into multiple display sections and each section’s supply voltage is adaptively adjusted to implement fine-grained DVS with display content. When applied to display image, some optimization algorithm and methods are developed to select suitable scaled voltage and maintain display quality with Structural Similarity Index (SSIM), which is an image distortion evaluation criteria based on human vision system (HVS). Experimental results show that, the FDVS technique can achieve 28.44%~39.24% more power saving on images. Further analysis shows FDVS technology can also effectively reduce the color remapping cost when color compensation is required to improve the image quality of an OLED panel working at a scaled supplied voltage
    • …
    corecore