786 research outputs found

    Bio-inspired 0.35ฮผm CMOS Time-to-Digital Converter with 29.3ps LSB

    Get PDF
    Time-to-digital converter (TDC) integrated circuit is introduced in this paper. It is based on chain of delay elements composing a regular scalable structure. The scheme is analogous to the sound direction sensitivity nerve system found in barn owl. The circuit occupies small silicon area, and its direct mapping from time to position-code makes conversion rates up to 500Msps possible. Specialty of the circuit is the structural and functional symmetry. Therefore the role of start and stop signals are interchangeable. In other words negative delay is acceptable: the circuit has no dead time problems. These are benefits of the biology model of the auditory scene representation in the bird's brain. The prototype chip is implemented in 0.35ฮผm CMOS having less than 30ps single-shot resolution in the measurements.Hungarian National Research Foundation TS4085

    The Efficient Design of Time-to-Digital Converters

    Get PDF

    Strategies towards high performance (high-resolution/linearity) time-to-digital converters on field-programmable gate arrays

    Get PDF
    Time-correlated single-photon counting (TCSPC) technology has become popular in scientific research and industrial applications, such as high-energy physics, bio-sensing, non-invasion health monitoring, and 3D imaging. Because of the increasing demand for high-precision time measurements, time-to-digital converters (TDCs) have attracted attention since the 1970s. As a fully digital solution, TDCs are portable and have great potential for multichannel applications compared to bulky and expensive time-to-amplitude converters (TACs). A TDC can be implemented in ASIC and FPGA devices. Due to the low cost, flexibility, and short development cycle, FPGA-TDCs have become promising. Starting with a literature review, three original FPGA-TDCs with outstanding performance are introduced. The first design is the first efficient wave union (WU) based TDC implemented in Xilinx UltraScale (20 nm) FPGAs with a bubble-free sub-TDL structure. Combining with other existing methods, the resolution is further enhanced to 1.23 ps. The second TDC has been designed for LiDAR applications, especially in driver-less vehicles. Using the proposed new calibration method, the resolution is adjustable (50, 80, and 100 ps), and the linearity is exceptionally high (INL pk-pk and INL pk-pk are lower than 0.05 LSB). Meanwhile, a software tool has been open-sourced with a graphic user interface (GUI) to predict TDCsโ€™ performance. In the third TDC, an onboard automatic calibration (AC) function has been realized by exploiting Xilinx ZYNQ SoC architectures. The test results show the robustness of the proposed method. Without the manual calibration, the AC function enables FPGA-TDCs to be applied in commercial products where mass production is required.Time-correlated single-photon counting (TCSPC) technology has become popular in scientific research and industrial applications, such as high-energy physics, bio-sensing, non-invasion health monitoring, and 3D imaging. Because of the increasing demand for high-precision time measurements, time-to-digital converters (TDCs) have attracted attention since the 1970s. As a fully digital solution, TDCs are portable and have great potential for multichannel applications compared to bulky and expensive time-to-amplitude converters (TACs). A TDC can be implemented in ASIC and FPGA devices. Due to the low cost, flexibility, and short development cycle, FPGA-TDCs have become promising. Starting with a literature review, three original FPGA-TDCs with outstanding performance are introduced. The first design is the first efficient wave union (WU) based TDC implemented in Xilinx UltraScale (20 nm) FPGAs with a bubble-free sub-TDL structure. Combining with other existing methods, the resolution is further enhanced to 1.23 ps. The second TDC has been designed for LiDAR applications, especially in driver-less vehicles. Using the proposed new calibration method, the resolution is adjustable (50, 80, and 100 ps), and the linearity is exceptionally high (INL pk-pk and INL pk-pk are lower than 0.05 LSB). Meanwhile, a software tool has been open-sourced with a graphic user interface (GUI) to predict TDCsโ€™ performance. In the third TDC, an onboard automatic calibration (AC) function has been realized by exploiting Xilinx ZYNQ SoC architectures. The test results show the robustness of the proposed method. Without the manual calibration, the AC function enables FPGA-TDCs to be applied in commercial products where mass production is required

    Arrayable Voltage-Controlled Ring-Oscillator for Direct Time-of-Flight Image Sensors

    Get PDF
    Direct time-of-flight (d-ToF) estimation with high frame rate requires the incorporation of a time-to-digital converter (TDC) at pixel level. A feasible approach to a compact implementation of the TDC is to use the multiple phases of a voltage-controlled ring-oscillator (VCRO) for the finest bits. The VCRO becomes central in determining the performance parameters of a d-ToF image sensor. In this paper, we are covering the modeling, design, and measurement of a CMOS pseudo-differential VCRO. The oscillation frequency, the jitter due to mismatches and noise and the power consumption are analytically evaluated. This design has been incorporated into a 64x64-pixel array. It has been fabricated in a 0.18 mu m standard CMOS technology. Occupation area is 28x29 mu m(2) and power consumption is 1.17 mW at 850 MHz. The measured gain of the VCRO is of 477 MHz/V with a frequency tuning range of 53%. Moreover, it features a linearity of 99.4% over a wide range of control frequencies, namely, from 400 to 850 MHz. The phase noise is of -102 dBc/Hz at 2 MHz offset frequency from 850 MHz. The influence of these parameters in the performance of the TDC has been measured. The minimum time bin of the TDC is 147 ps with a rms DNL/INL of 0.13/1.7LSB.Office of Naval Research (USA) N000141410355Ministerio de Economรญa y Competitividad TEC2015-66878-C3-1-RJunta de Andalucรญa P12-TIC 233

    Study of a Time Assisted SAR ADC

    Get PDF
    The demand for low power systems has been increasing in recent years and Analogto- Digital Converters (ADCs) are key blocks of many of these systems as they convert a physical quantity into the digital domain so that this information can be further processed or stored using digital techniques. Data Converters based on Charge Redistribution using of Successive Approximation Registers (SAR) are becoming one of the most popular ADC architectures for moderate speed, medium resolution and low power applications. Due to their low analog complexity SAR ADCs benefit from technology scaling. However, this scaling often comes with a supply voltage reduction and the noise levels do not decrease at the same rate, which translates into a performance decrease. Therefore, new opportunities emerge to explore other physical quantities such as time, frequency, phase or charge in the circuit. This thesis focuses on studying how the time domain information can be used to increase the performance of SAR ADCs. To do so, a new SAR ADC architecture is proposed in which a Time-to-Digital Converter (TDC) is used to convert the time domain information, provided by the comparator, into the digital domain. This new architecture was modelled in MATLAB as a 12 bit TDC assisted SAR ADC, using information from electrical simulations of the comparator and the TDC, designed in Cadence in 65 nm ST Microelectronics CMOS technology. Simulation results demonstrated that, to achieve a better performance when compared to more traditional SAR structures, the TDC energy and latency should be minimized. Another limiting factor was the large voltage range in which only 1 bit could be extracted from the time-to-voltage conversion by the TDC due to the comparatorโ€™s fast response in this range. The proposed architecture was also extended to incorporate a Bypass Window in the time domain, which allowed to substantially decrease the number of clock cycles necessary to solve the 12 bits of the ADC

    All-digital time-to-digital converter design methodology based on structured data paths

    Get PDF
    Time-to-Digital Converters (TDC) are popular circuits in many applications, where high resolution time measurements are required, for example, in Positron Emission Tomography (PET). Besides its resolution, the TDC's linearity is also an important performance indicator, therefore calibration circuits usually play an important role on TDCs architectures. This paper presents an all-digital TDC implemented using Structured Datapath to reduce the need for calibration circuitry and cells custom design, without compromising the TDC's linearity. The proposed design is fully implementable using a Hardware Description Language (HDL) and enables a complete design flow automation, reducing both development time and system's complexity. The TDC is based on a Delay Locked Loop (DLL) paired with a coarse counter to increase measurement range. The proposed architecture and the design approach have proven to be efficient in developing a high resolution TDC with high linearity. The proposed TDC was implemented in TSMC 0.18 ฮผm CMOS technology process achieving a resolution of 180ps, with Differential Non-Linearity (DNL) and Integral Non-Linearity (INL) under 0.6 LSB.FRCT - Fundo Regional para a Ciรชncia e Tecnologia(PDE/BDE/114562/2016

    ํŽ„์Šค ๊ธฐ๋ฐ˜ ํ”ผ๋“œ ํฌ์›Œ๋“œ ์ดํ€„๋ผ์ด์ €๋ฅผ ๊ฐ–์ถ˜ ๊ณ ์šฉ๋Ÿ‰ DRAM์„ ์œ„ํ•œ ์ปจํŠธ๋กค๋Ÿฌ PHY ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2020. 8. ๊น€์ˆ˜ํ™˜.A controller PHY for managed DRAM solution, which is a new memory structure to maximize capacity while minimizing refresh power, is presented. Inter-symbol interference is critical in such a high-capacity DRAM interface in which many DRAM chips share a command/address (C/A) channel. A pulse-based feed-forward equalizer (PB-FFE) is introduced to reduce ISI on a C/A channel. The controller PHY supports all the training sequences specified in the DDR4 standard. A glitch-free DCDL is also adopted to perform link training efficiently and to reduce training time. The DQ transmitter adopts quarter-rate architecture to reduce output latency. For the quarter-rate transmitters in DQ, we propose a quadrature error corrector (QEC), in which clock signal phase errors are corrected using two replicas of the 4:1 serializer of the output stage. Pulse shrinking is used to compare and equalize the outputs of these two replica serializers. A controller PHY was fabricated in 55nm CMOS. The PB-FFE increases the timing margin from 0.23UI to 0.29UI at 1067Mbps. At 2133Mbps, the read timing and voltage margins are 0.53UI and 211mV after read training, and the write margins are 0.72UI and 230mV after write training. To validate the QEC effectiveness, a prototype quarter-rate transmitter, including the QEC, was fabricated to another chip in 65nm CMOS. Adopting our QEC, the experimental results show that the output phase errors of the transmitter are reduced to a residual error of 0.8ps, and the output eye width and height are improved by 84% and 61%, respectively, at a data-rate of 12.8Gbps.๋ณธ ์—ฐ๊ตฌ์—์„œ ์šฉ๋Ÿ‰์„ ์ตœ๋Œ€ํ™”ํ•˜๋ฉด์„œ๋„ ๋ฆฌํ”„๋ ˆ์‹œ ์ „๋ ฅ์„ ์ตœ์†Œํ™”ํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ๋ฉ”๋ชจ๋ฆฌ ๊ตฌ์กฐ์ธ ๊ด€๋ฆฌํ˜• DRAM ์†”๋ฃจ์…˜์„ ์œ„ํ•œ ์ปจํŠธ๋กค๋Ÿฌ PHY๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ์ด์™€ ๊ฐ™์€ ๊ณ ์šฉ๋Ÿ‰ DRAM ์ธํ„ฐํŽ˜์ด์Šค์—์„œ๋Š” ๋งŽ์€ DRAM ์นฉ์ด ๋ช…๋ น / ์ฃผ์†Œ (C/A) ์ฑ„๋„์„ ๊ณต์œ ํ•˜๊ณ  ์žˆ์–ด์„œ ์‹ฌ๋ณผ ๊ฐ„ ๊ฐ„์„ญ์ด ๋ฐœ์ƒํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋Ÿฌํ•œ C/A ์ฑ„๋„์—์„œ์˜ ์‹ฌ๋ณผ ๊ฐ„ ๊ฐ„์„ญ์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ํŽ„์Šค ๊ธฐ๋ฐ˜ ํ”ผ๋“œ ํฌ์›Œ๋“œ ์ดํ€„๋ผ์ด์ € (PB-FFE)๋ฅผ ์ฑ„ํƒํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋ณธ ์—ฐ๊ตฌ์˜ ์ปจํŠธ๋กค๋Ÿฌ PHY๋Š” DDR4 ํ‘œ์ค€์— ์ง€์ •๋œ ๋ชจ๋“  ํŠธ๋ ˆ์ด๋‹ ์‹œํ€€์Šค๋ฅผ ์ง€์›ํ•œ๋‹ค. ๋งํฌ ํŠธ๋ ˆ์ด๋‹์„ ํšจ์œจ์ ์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๊ณ  ํŠธ๋ ˆ์ด๋‹ ์‹œ๊ฐ„์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ๊ธ€๋ฆฌ์น˜๊ฐ€ ๋ฐœ์ƒํ•˜์ง€ ์•Š๋Š” ๋””์ง€ํ„ธ ์ œ์–ด ์ง€์—ฐ ๋ผ์ธ (DCDL)์„ ์ฑ„ํƒํ•˜์˜€๋‹ค. ์ปจํŠธ๋กค๋Ÿฌ PHY์˜ DQ ์†ก์‹ ๊ธฐ๋Š” ์ถœ๋ ฅ ๋Œ€๊ธฐ ์‹œ๊ฐ„์„ ์ค„์ด๊ธฐ ์œ„ํ•ด ์ฟผํ„ฐ ๋ ˆ์ดํŠธ ๊ตฌ์กฐ๋ฅผ ์ฑ„ํƒํ•˜์˜€๋‹ค. ์ฟผํ„ฐ ๋ ˆ์ดํŠธ ์†ก์‹ ๊ธฐ์˜ ๊ฒฝ์šฐ์—๋Š” ์ง๊ต ํด๋Ÿญ ๊ฐ„ ์œ„์ƒ ์˜ค๋ฅ˜๊ฐ€ ์ถœ๋ ฅ ์‹ ํ˜ธ์˜ ๋ฌด๊ฒฐ์„ฑ์— ์˜ํ–ฅ์„ ์ฃผ๊ฒŒ ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์˜ํ–ฅ์„ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ถœ๋ ฅ ๋‹จ์˜ 4 : 1 ์ง๋ ฌ ๋ณ€ํ™˜๊ธฐ์˜ ๋‘ ๋ณต์ œ๋ณธ์„ ์‚ฌ์šฉํ•˜์—ฌ ํด๋ก ์‹ ํ˜ธ ์œ„์ƒ ์˜ค๋ฅ˜๋ฅผ ์ˆ˜์ •ํ•˜๋Š” QEC (Quadrature Error Corrector)๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ณต์ œ๋œ 2๊ฐœ์˜ ์ง๋ ฌ ๋ณ€ํ™˜๊ธฐ์˜ ์ถœ๋ ฅ์„ ๋น„๊ตํ•˜๊ณ  ๊ท ๋“ฑํ™”ํ•˜๊ธฐ ์œ„ํ•ด ํŽ„์Šค ์ˆ˜์ถ• ์ง€์—ฐ ๋ผ์ธ์ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ์ปจํŠธ๋กค๋Ÿฌ PHY๋Š” 55nm CMOS ๊ณต์ •์œผ๋กœ ์ œ์กฐ๋˜์—ˆ๋‹ค. PB-FFE๋Š” 1067Mbps์—์„œ C/A ์ฑ„๋„ ํƒ€์ด๋ฐ ๋งˆ์ง„์„ 0.23UI์—์„œ 0.29UI๋กœ ์ฆ๊ฐ€์‹œํ‚จ๋‹ค. ์ฝ๊ธฐ ํŠธ๋ ˆ์ด๋‹ ํ›„ ์ฝ๊ธฐ ํƒ€์ด๋ฐ ๋ฐ ์ „์•• ๋งˆ์ง„์€ 2133Mbps์—์„œ 0.53UI ๋ฐ 211mV์ด๊ณ , ์“ฐ๊ธฐ ํŠธ๋ ˆ์ด๋‹ ํ›„ ์“ฐ๊ธฐ ๋งˆ์ง„์€ 0.72UI ๋ฐ 230mV์ด๋‹ค. QEC์˜ ํšจ๊ณผ๋ฅผ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด QEC๋ฅผ ํฌํ•จํ•œ ํ”„๋กœํ†  ํƒ€์ž… ์ฟผํ„ฐ ๋ ˆ์ดํŠธ ์†ก์‹ ๊ธฐ๋ฅผ 65nm CMOS์˜ ๋‹ค๋ฅธ ์นฉ์œผ๋กœ ์ œ์ž‘ํ•˜์˜€๋‹ค. QEC๋ฅผ ์ ์šฉํ•œ ์‹คํ—˜ ๊ฒฐ๊ณผ, ์†ก์‹ ๊ธฐ์˜ ์ถœ๋ ฅ ์œ„์ƒ ์˜ค๋ฅ˜๊ฐ€ 0.8ps์˜ ์ž”๋ฅ˜ ์˜ค๋ฅ˜๋กœ ๊ฐ์†Œํ•˜๊ณ , ์ถœ๋ ฅ ๋ฐ์ดํ„ฐ ๋ˆˆ์˜ ํญ๊ณผ ๋†’์ด๊ฐ€ 12.8Gbps์˜ ๋ฐ์ดํ„ฐ ์†๋„์—์„œ ๊ฐ๊ฐ 84 %์™€ 61 % ๊ฐœ์„ ๋˜์—ˆ์Œ์„ ๋ณด์—ฌ์ค€๋‹ค.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.1.1 HEAVY LOAD C/A CHANNEL 5 1.1.2 QUARTER-RATE ARCHITECTURE IN DQ TRANSMITTER 7 1.1.3 SUMMARY 8 1.2 THESIS ORGANIZATION 10 CHAPTER 2 ARCHITECTURE 11 2.1 MDS DIMM STRUCTURE 11 2.2 MDS CONTROLLER 15 2.3 MDS CONTROLLER PHY 17 2.3.1 INITIALIZATION SEQUENCE 20 2.3.2 LINK TRAINING FINITE-STATE MACHINE 23 2.3.3 POWER DOWN MODE 28 CHAPTER 3 PULSE-BASED FEED-FORWARD EQUALIZER 29 3.1 COMMAND/ADDRESS CHANNEL 29 3.2 COMMAND/ADDRESS TRANSMITTER 33 3.3 PULSE-BASED FEED-FORWARD EQUALIZER 35 CHAPTER 4 CIRCUIT IMPLEMENTATION 39 4.1 BUILDING BLOCKS 39 4.1.1 ALL-DIGITAL PHASE-LOCKED LOOP (ADPLL) 39 4.1.2 ALL-DIGITAL DELAY-LOCKED LOOP (ADDLL) 44 4.1.3 GLITCH-FREE DCDL CONTROL 47 4.1.4 DUTY-CYCLE CORRECTOR (DCC) 50 4.1.5 DQ/DQS TRANSMITTER 52 4.1.6 DQ/DQS RECEIVER 54 4.1.7 ZQ CALIBRATION 56 4.2 MODELING AND VERIFICATION OF LINK TRAINING 59 4.3 BUILT-IN SELF-TEST CIRCUITS 66 CHAPTER 5 QUADRATURE ERROR CORRECTOR USING REPLICA SERIALIZERS AND PULSE-SHRINKING DELAY LINES 69 5.1 PHASE CORRECTION USING REPLICA SERIALIZERS AND PULSE-SHRINKING UNITS 69 5.2 OVERALL QEC ARCHITECTURE AND ITS OPERATION 71 5.3 FINE DELAY UNIT IN THE PSDL 76 CHAPTER 6 EXPERIMENTAL RESULTS 78 6.1 CONTROLLER PHY 78 6.2 PROTOTYPE QEC 88 CHAPTER 7 CONCLUSION 94 BIBLIOGRAPHY 96Docto

    HBM3์—์„œ DQS ์‹ ํ˜ธ๋ฅผ ์œ„ํ•œ 4-์œ„์ƒ ์—๋Ÿฌ ๊ต์ •๊ธฐ์˜ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022.2. ๊น€์žฌํ•˜.As the speed of high bandwidth memory (HBM) increased, the skew of the quad-rature data strobe (DQS) signals started to affect the internal operation of HBM. On-ly the skew of the quadrature clock signals sent from memory needed to be correct-ed before. Previously suggested quadrature error correctors are applicable only to periodic clock signals and not to aperiodic DQS signals. Therefore, a new circuit for correcting phase skew of DQS signals is needed. This thesis presents a design methodology of a quadrature error corrector for HBM3 that can correct the phase skew of DQS signals. The proposed quadrature error corrector can correct aperiodic signals using a clock signal of the same fre-quency, which detects 1/4 point of the clock period in a capacitor charging method. The quadrature error corrector uses a 4:1 ratio capacitor to detect whether the phase difference of DQS signals is 1/4 of clock period. The quadrature error is corrected by adjusting delay lines using information from the phase error detector. After the calibration, the feedback loop is off to save power. Implemented in 40-nm CMOS, the post-layout simulation results demonstrate the operation range from 1.0 to 2-GHz and a corrected phase error of less than 8.69-ps for the DQS signal while con-suming maximum power of 2.42-mW from a 1.6-GHz frequency and a 1.1-V supply.๊ณ ๋Œ€์—ญํญ ๋ฉ”๋ชจ๋ฆฌ(High Bandwidth Memory)์˜ ์†๋„๊ฐ€ ๋นจ๋ผ์ง€๋ฉด์„œ ์ฟผ๋“œ๋Ÿฌ์ณ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋กœ๋ธŒ(DQS) ์‹ ํ˜ธ์˜ ์Šคํ๊ฐ€ ๋‚ด๋ถ€ ๋™์ž‘์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ธฐ ์‹œ์ž‘ํ•œ๋‹ค. ์ด์ „์—๋Š” ๋ฉ”๋ชจ๋ฆฌ์—์„œ ๋‚ด๋ณด๋‚ด๋Š” ์ฟผ๋“œ๋Ÿฌ์ณ ํด๋ฝ ์‹ ํ˜ธ์˜ ์Šคํ๋งŒ ์ˆ˜์ •ํ•˜๋ฉด ๋˜์—ˆ๋‹ค. ์ด์ „์— ์ œ์•ˆ๋œ ์ฟผ๋“œ๋Ÿฌ์ณ ์—๋Ÿฌ ๊ต์ •๊ธฐ๋Š” ์ฃผ๊ธฐ์ ์ธ ํด๋ฝ ์‹ ํ˜ธ์—๋งŒ ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋ฉฐ ๋น„์ฃผ๊ธฐ์ ์ธ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋กœ๋ธŒ ์‹ ํ˜ธ์—๋Š” ์ ์šฉํ•  ์ˆ˜ ์—†๋‹ค. ๋”ฐ๋ผ์„œ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋กœ๋ธŒ ์‹ ํ˜ธ์˜ ์œ„์ƒ ์—๋Ÿฌ๋ฅผ ๊ต์ •ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํšŒ๋กœ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” HBM3์—์„œ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋กœ๋ธŒ ์‹ ํ˜ธ์˜ ์œ„์ƒ ์—๋Ÿฌ๋ฅผ ์ˆ˜์ •ํ•  ์ˆ˜ ์žˆ๋Š” ์ฟผ๋“œ๋Ÿฌ์ณ ์—๋Ÿฌ ๊ต์ •๊ธฐ์˜ ์„ค๊ณ„ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์ฟผ๋“œ๋Ÿฌ์ณ ์—๋Ÿฌ ๊ต์ •๊ธฐ๋Š” ๋™์ผํ•œ ์ฃผํŒŒ์ˆ˜์˜ ํด๋ฝ ์‹ ํ˜ธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ปคํŒจ์‹œํ„ฐ ์ถฉ์ „ ๋ฐฉ์‹์œผ๋กœ ๋น„์ฃผ๊ธฐ์ ์ธ ์‹ ํ˜ธ๋ฅผ ๊ต์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฟผ๋“œ๋Ÿฌ์ณ ์—๋Ÿฌ ๊ต์ •๊ธฐ๋Š” 4:1 ๋น„์œจ์˜ ์ปคํŒจ์‹œํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋กœ๋ธŒ ์‹ ํ˜ธ์˜ ์œ„์ƒ ์ฐจ์ด๊ฐ€ ํด๋ฝ ์ฃผ๊ธฐ์˜ 1/4์ธ์ง€ ์—ฌ๋ถ€๋ฅผ ๊ฐ์ง€ํ•œ๋‹ค. ์ฟผ๋“œ๋Ÿฌ์ณ ์—๋Ÿฌ๋Š” ์œ„์ƒ ์—๋Ÿฌ๋ฅผ ๊ฐ์ง€ํ•œ ์ •๋ณด๋ฅผ ์ด์šฉํ•˜์—ฌ ๋””์ง€ํ„ธ ์ œ์–ด ๋”œ๋ ˆ์ด ๋ผ์ธ(digitally con-trolled delay line)์„ ํ†ตํ•ด ๋ณด์ •๋œ๋‹ค. ๋ณด์ • ํ›„์—๋Š” ์ „๋ ฅ ์†Œ๋ชจ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋””์ง€ํ„ธ ์ œ์–ด ๋”œ๋ ˆ์ด ๋ผ์ธ๋งŒ ๋™์ž‘์‹œํ‚ค๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. 40 ๋‚˜๋…ธ๋ฏธํ„ฐ ๊ณต์ •์œผ๋กœ ๊ตฌํ˜„๋˜์—ˆ์œผ๋ฉฐ, ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ 1 โ€“ 2 GHz์—์„œ ๋™์ž‘ ๊ฐ€๋Šฅํ•˜๋ฉฐ 1.6 GHz์™€ 1.1 V ๊ณต๊ธ‰ ์ „์›์œผ๋กœ ๋™์ž‘ํ•˜์˜€์„ ๋•Œ ์ตœ๋Œ€ 2.42 mW์˜ ์ „๋ ฅ์„ ์†Œ๋น„ํ•˜๋ฉฐ ๋ณด์ • ๊ฒฐ๊ณผ 8.69 ps ์ดํ•˜์˜ ์˜ค๋ฅ˜๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค.I. Abstract 3 II. Contents 4 III. List of figures 6 V. List of tables 8 Chapter 1. Introduction 9 1.1 Motivation 9 1.2 Thesis organization 12 Chapter 2. Operation and architecture of the quadrature error corrector 13 2.1 Principles of operation 13 2.2 Overall structure 16 Chapter 3. Circuit implementation 18 3.1 Pulse-width detector 18 3.1.1 Three modes of pulse-width detector 18 3.1.2 Design consideration 21 3.1.3 Current digital to analog converter 24 3.1.4 Switch logics 27 3.1.5 Simulation of pulse-width detector 28 3.2 Pulse generator 31 3.3 Digitally controlled delay lines 34 3.4 DIV8 & 3-bit counter 37 3.5 Digital loop filter 39 Chapter 4. Simulation results 41 4.1 Test circuits 41 4.1.1 DQS generator 41 4.1.2 Sampler 43 4.1.3 Test MUX 44 4.2 Chip layout 45 4.3 Simulation results 47 4.4 Performance summary 53 Chapter 5. Conclusion 54 Bibliography 55 Abstract in korean 57์„

    Baseband analog circuits in deep-submicron cmos technologies targeted for mobile multimedia

    Get PDF
    Three main analog circuit building blocks that are important for a mixed-signal system are investigated in this work. New building blocks with emphasis on power efficiency and compatibility with deep-submicron technology are proposed and experimental results from prototype integrated circuits are presented. Firstly, a 1.1GHz, 5th order, active-LC, Butterworth wideband equalizer that controls inter-symbol interference and provides anti-alias filtering for the subsequent analog to digital converter is presented. The equalizer design is based on a new series LC resonator biquad whose power efficiency is analytically shown to be better than a conventional Gm-C biquad. A prototype equalizer is fabricated in a standard 0.18ฮผm CMOS technology. It is experimentally verified to achieve an equalization gain programmable over a 0-23dB range, 47dB SNR and -48dB IM3 while consuming 72mW of power. This corresponds to more than 7 times improvement in power efficiency over conventional Gm-C equalizers. Secondly, a load capacitance aware compensation for 3-stage amplifiers is presented. A class-AB 16W headphone driver designed using this scheme in 130nm technology is experimentally shown to handle 1pF to 22nF capacitive load while consuming as low as 1.2mW of quiescent power. It can deliver a maximum RMS power of 20mW to the load with -84.8dB THD and 92dB peak SNR, and it occupies a small area of 0.1mm2. The power consumption is reduced by about 10 times compared to drivers that can support such a wide range of capacitive loads. Thirdly, a novel approach to design of ADC in deep-submicron technology is described. The presented technique enables the usage of time-to-digital converter (TDC) in a delta-sigma modulator in a manner that takes advantage of its high timing precision while noise-shaping the error due to its limited time resolution. A prototype ADC designed based on this deep-submicron technology friendly architecture was fabricated in a 65nm digital CMOS technology. The ADC is experimentally shown to achieve 68dB dynamic range in 20MHz signal bandwidth while consuming 10.5mW of power. It is projected to reduce power and improve speed with technology scaling
    • โ€ฆ
    corecore