16,859 research outputs found

    ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•œ ๋‹ค์ค‘์Šค์ผ€์ผ/๋‹ค๋ชฉ์  ๊ณต๊ฐ„๊ณ„ํš ์ตœ์ ํ™”๋ชจ๋ธ ๊ตฌ์ถ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ํ™˜๊ฒฝ๋Œ€ํ•™์› ํ˜‘๋™๊ณผ์ • ์กฐ๊ฒฝํ•™์ „๊ณต, 2019. 2. ์ด๋™๊ทผ.๊ณต๊ฐ„๊ณ„ํš ๊ณผ์ •์—์„œ ๋‹ค์–‘ํ•œ ์ดํ•ด๊ด€๊ณ„์ž์™€ ๊ฒฐ๋ถ€๋œ ๋ชฉํ‘œ์™€ ์ œ์•ฝ ์š”๊ฑด์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ๊ฒƒ์€ ๋ณต์žกํ•œ ๋น„์„ ํ˜•์  ๋ฌธ์ œ๋กœ์„œ ํ•ด๊ฒฐํ•˜๊ธฐ ์–ด๋ ค์šด ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ตœ๊ทผ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์— ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (genetic algorithms), ๋‹ด๊ธˆ์งˆ ๊ธฐ๋ฒ• (simulated annealing), ๊ฐœ๋ฏธ ๊ตฐ์ง‘ ์ตœ์ ํ™” (ant colony optimization) ๋“ฑ์˜ ๋‹ค๋ชฉ์  ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์‘์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ๊ด€๋ จ ์—ฐ๊ตฌ ์—ญ์‹œ ๊ธ‰์ฆํ•˜๊ณ  ์žˆ๋‹ค. ์ด ์ค‘ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ถ€๋ฌธ์— ๊ฐ€์žฅ ๋นˆ๋„ ๋†’๊ฒŒ ์ ์šฉ๋œ ์ตœ์ ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์œผ๋กœ exploration๊ณผ exploitation์˜ ๊ท ํ˜•์œผ๋กœ ํ•ฉ๋ฆฌ์ ์ธ ์‹œ๊ฐ„ ๋‚ด์— ์ถฉ๋ถ„ํžˆ ์ข‹์€ ๊ณ„ํš์•ˆ์„ ์ œ์‹œํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ณต๊ฐ„ ์ตœ์ ํ™” ์—ฐ๊ตฌ๊ฐ€ ๋ณด์—ฌ์ค€ ์ข‹์€ ์„ฑ๊ณผ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ  ๋Œ€๋ถ€๋ถ„์˜ ์—ฐ๊ตฌ๊ฐ€ ํŠน์ • ์šฉ๋„ ํ˜น์€ ์‹œ์„ค์˜ ๋ฐฐ์น˜์— ์ง‘์ค‘๋˜์–ด ์žˆ์œผ๋ฉฐ, ๊ธฐํ›„๋ณ€ํ™” ์ ์‘, ์žฌํ•ด ๊ด€๋ฆฌ, ๊ทธ๋ฆฐ์ธํ”„๋ผ ๊ณ„ํš๊ณผ ๊ฐ™์€ ์ตœ๊ทผ์˜ ํ™˜๊ฒฝ ์ด์Šˆ๋ฅผ ๋‹ค๋ฃฌ ์‚ฌ๋ก€๋Š” ๋งค์šฐ ๋ฏธํกํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๋น„์ง€๋ฐฐ ์ •๋ ฌ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (non-dominated sorting genetic algorithm II)์— ๊ธฐ์ดˆํ•˜์—ฌ ๊ธฐํ›„๋ณ€ํ™” ์ ์‘, ์žฌํ•ด ๊ด€๋ฆฌ, ๋„์‹œ์˜ ๋…น์ง€ ๊ณ„ํš ๋“ฑ๊ณผ ๊ฐ™์€ ํ™˜๊ฒฝ ์ด์Šˆ๋ฅผ ๊ณต๊ฐ„๊ณ„ํš์— ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋Š” ์ผ๋ จ์˜ ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ชจ๋ธ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๊ฐœ๋ณ„ ํ™˜๊ฒฝ ์ด์Šˆ์— ๋”ฐ๋ผ ๊ณต๊ฐ„ ํ•ด์ƒ๋„, ๋ชฉ์ , ์ œ์•ฝ์š”๊ฑด์ด ๋‹ค๋ฅด๊ฒŒ ๊ตฌ์„ฑํ•˜์˜€์œผ๋ฉฐ, ๊ณต๊ฐ„์  ๋ฒ”์œ„๊ฐ€ ์ข์•„์ง€๊ณ  ๊ณต๊ฐ„ํ•ด์ƒ๋„๋Š” ๋†’์•„์ง€๋Š” ์ˆœ์„œ๋Œ€๋กœ ๋‚˜์—ดํ•˜์˜€๋‹ค. ๋…ผ๋ฌธ์˜ ์ฒซ๋ฒˆ์งธ ์žฅ์—์„œ๋Š” ํ–‰์ •๊ตฌ์—ญ ๋„ ๊ทœ๋ชจ (province scale, ํ•ด์ƒ๋„ 1ใŽข)์—์„œ ๋ฏธ๋ž˜์˜ ๊ธฐํ›„๋ณ€ํ™”์— ์ ์‘ํ•˜๊ธฐ ์œ„ํ•œ ํ† ์ง€์ด์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๋ชจ์˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ธฐํ›„๋ณ€ํ™”๊ฐ€ ๋จผ ๋ฏธ๋ž˜๊ฐ€ ์•„๋‹Œ, ํ˜„์žฌ ์ด๋ฏธ ์ง„ํ–‰๋˜๊ณ  ์žˆ์œผ๋ฉฐ ๊ด€๋ จํ•œ ๋‹ค์ˆ˜์˜ ํ”ผํ•ด๊ฐ€ ๊ด€์ฐฐ๋˜๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ณต๊ฐ„์  ๊ด€์ ์—์„œ ๊ธฐํ›„๋ณ€ํ™”์— ๋Œ€ํ•œ ์ ์‘์˜ ํ•„์š”์„ฑ์ด ์ง€์ ๋˜์–ด ์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ตฌ์ฒด์ ์œผ๋กœ ๊ธฐํ›„์— ๋Œ€ํ•œ ํšŒ๋ณต ํƒ„๋ ฅ์„ฑ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ํ† ์ง€์ด์šฉ์˜ ๊ณต๊ฐ„์  ๊ตฌ์„ฑ์„ ์–ด๋–ป๊ฒŒ ๋ณ€ํ™”์‹œ์ผœ์•ผ ํ• ์ง€์— ๋Œ€ํ•œ ๋ฐฉ๋ฒ•๋ก  ์ œ์‹œ๋Š” ๋ฏธํกํ•˜๋‹ค. ์ง€์—ญ๊ณ„ํš์—์„œ ๊ธฐํ›„๋ณ€ํ™” ์˜ํ–ฅ์„ ๊ณ ๋ คํ•œ ํ† ์ง€์ด์šฉ ๋ฐฐ๋ถ„์€ ๋งค์šฐ ์œ ์šฉํ•œ, ๊ธฐ๋ณธ์ ์ธ ์ค‘์žฅ๊ธฐ ์ ์‘ ์ „๋žต์— ํ•ด๋‹นํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‹ค๋ชฉ์  ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ (MOGA, multi-objective genetic algorithm)์— ๊ธฐ์ดˆํ•˜์—ฌ 9,982ใŽข์— 350๋งŒ์˜ ์ธ๊ตฌ๊ฐ€ ๊ฑฐ์ฃผํ•˜๋Š” ํ•œ๊ตญ์˜ ์ถฉ์ฒญ๋‚จ๋„ ๋ฐ ๋Œ€์ „๊ด‘์—ญ์‹œ ์ผ๋Œ€๋ฅผ ๋Œ€์ƒ์œผ๋กœ ๊ธฐํ›„๋ณ€ํ™” ์ ์‘์„ ์œ„ํ•œ ํ† ์ง€์ด์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ์ง€์—ญ์ ์ธ ๊ธฐํ›„๋ณ€ํ™” ์˜ํ–ฅ๊ณผ ๊ฒฝ์ œ์  ์—ฌ๊ฑด์„ ๊ณ ๋ คํ•˜์—ฌ ์žฌํ•ด ํ”ผํ•ด ๋ฐ ์ „ํ™˜๋Ÿ‰์˜ ์ตœ์†Œํ™”, ๋ฒผ ์ƒ์‚ฐ๋Ÿ‰, ์ข… ํ’๋ถ€๋„ ๋ณด์ „, ๊ฒฝ์ œ์  ๊ฐ€์น˜์˜ ์ตœ๋Œ€ํ™” ๋“ฑ ๋‹ค์„ฏ ๊ฐ€์ง€์˜ ๋ชฉ์ ์„ ์„ ํƒํ•˜์˜€๋‹ค. ๊ฐ ๋ชฉ์  ๋ณ„ ๊ฐ€์ค‘์น˜๋ฅผ ๋ณ€ํ™”์‹œํ‚ค๋ฉฐ ์—ฌ์„ฏ ๊ฐ€์ง€ ๊ฐ€์ค‘์น˜ ์กฐํ•ฉ์— ๋Œ€ํ•œ 17๊ฐœ์˜ ํŒŒ๋ ˆํ†  ์ตœ์  ํ† ์ง€์ด์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ƒ์„ฑํ•˜์˜€๋‹ค. ๋Œ€๋ถ€๋ถ„์˜ ์‹œ๋‚˜๋ฆฌ์˜ค๋Š” ์ •๋„์˜ ์ฐจ์ด๋Š” ์žˆ์œผ๋‚˜ ํ˜„์žฌ์˜ ํ† ์ง€์ด์šฉ์— ๋น„ํ•ด ๊ธฐํ›„๋ณ€ํ™” ์ ์‘ ๋ถ€๋ถ„์—์„œ ๋” ์ข‹์€ ํผํฌ๋จผ์Šค๋ฅผ ๋ณด์˜€์œผ๋ฏ€๋กœ, ๊ธฐํ›„๋ณ€ํ™”์— ๋Œ€ํ•œ ํšŒ๋ณตํƒ„๋ ฅ์„ฑ์ด ๊ฐœ์„ ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ํŒ๋‹จํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ชจ๋ธ์˜ ์œ ์—ฐํ•œ ๊ตฌ์กฐ๋ฅผ ๊ณ ๋ คํ•˜์˜€์„ ๋•Œ, ์ง€์—ญ์˜ ์‹ค๋ฌด์ž ์—ญ์‹œ ๊ฐ€์ค‘์น˜์™€ ๊ฐ™์€ ๋ชจ๋ธ์˜ ํŒŒ๋ผ๋ฏธํ„ฐ, ๊ธฐํ›„๋ณ€ํ™” ์˜ํ–ฅ ํ‰๊ฐ€์™€ ๊ฐ™์€ ์ž…๋ ฅ์ž๋ฃŒ๋ฅผ ๋ณ€๊ฒฝํ•จ์œผ๋กœ์จ ํšจ์œจ์ ์œผ๋กœ ์ƒˆ๋กœ์šด ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ์ƒ์„ฑ ๋ฐ ์„ ํƒํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•˜์˜€๋‹ค. ๋…ผ๋ฌธ์˜ ๋‘ ๋ฒˆ์งธ ์žฅ์—์„œ๋Š” ํ–‰์ •๊ตฌ์—ญ ๊ตฐ ๊ทœ๋ชจ (local scale, ํ•ด์ƒ๋„ 100m)์—์„œ ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์žฌํ•ด ํ”ผํ•ด๋ฅผ ๊ด€๋ฆฌํ•˜๊ธฐ ์œ„ํ•œ ํ† ์ง€์ด์šฉ ์‹œ๋‚˜๋ฆฌ์˜ค๋ฅผ ๋ชจ์˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์‚ฐ์•…์ง€ํ˜•์—์„œ ํญ์šฐ๋กœ ์ธํ•œ ์‚ฐ์‚ฌํƒœ๋Š” ์ธ๋ช…๊ณผ ์žฌ์‚ฐ์— ์‹ฌ๊ฐํ•œ ํ”ผํ•ด๋ฅผ ์ดˆ๋ž˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋”์šฑ์ด ๊ธฐํ›„๋ณ€ํ™”์— ๋”ฐ๋ฅธ ๊ฐ•์šฐ์˜ ๋ณ€๋™์„ฑ ์ฆ๊ฐ€๋กœ ์ด๋Ÿฌํ•œ ์‚ฐ์‚ฌํƒœ ๋นˆ๋„ ๋ฐ ๊ฐ•๋„ ์—ญ์‹œ ์ฆ๋Œ€๋  ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์‚ฐ์‚ฌํƒœ ๋ฆฌ์Šคํฌ๊ฐ€ ๋†’์€ ์ง€์—ญ์„ ํ”ผํ•ด ๊ฐœ๋ฐœ์ง€์—ญ์„ ๋ฐฐ์น˜ํ•˜๋Š” ๊ฒƒ์ด ํ”ผํ•ด๋ฅผ ์ €๊ฐ ํ˜น์€ ํšŒํ”ผํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€์žฅ ํšจ๊ณผ์ ์ธ ์ „๋žต์œผ๋กœ ์•Œ๋ ค์ ธ ์žˆ์œผ๋‚˜, ์‹ค์ œ๊ณต๊ฐ„์—์„œ์˜ ๊ณ„ํš์€ ๋งค์šฐ ๋ณต์žกํ•œ ๋น„์„ ํ˜•์˜ ๋ฌธ์ œ๋กœ์„œ ์ด๊ฒƒ์„ ์‹คํ˜„ํ•˜๋Š” ๋ฐ ์–ด๋ ค์›€์ด ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋น„์ง€๋ฐฐ ์ •๋ ฌ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ II์— ๊ธฐ์ดˆํ•˜์—ฌ ์‚ฐ์‚ฌํƒœ ๋ฆฌ์Šคํฌ ๋ฐ ์ „ํ™˜๋Ÿ‰, ํŒŒํŽธํ™”์˜ ์ตœ์†Œํ™” ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ๋ชฉ์ ์„ ๋งŒ์กฑ์‹œํ‚ค๋Š” ์ข…ํ•ฉ์ ์ธ ํ† ์ง€์ด์šฉ ๋ฐฐ๋ถ„ ๊ณ„ํš์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋Œ€์ƒ์ง€๋Š” 2018๋…„ ๋™๊ณ„์˜ฌ๋ฆผํ”ฝ ๊ฐœ์ตœ์ง€์ธ ํ•œ๊ตญ์˜ ํ‰์ฐฝ๊ตฐ์œผ๋กœ์„œ 2006๋…„์— ์‚ฐ์‚ฌํƒœ๋กœ ์ธํ•œ ๋Œ€๊ทœ๋ชจ์˜ ํ”ผํ•ด๋ฅผ ๊ฒฝํ—˜ํ•˜์˜€์œผ๋‚˜, ์˜ฌ๋ฆผํ”ฝ ํŠน์ˆ˜ ๋“ฑ์˜ ๊ฐœ๋ฐœ์••๋ ฅ์œผ๋กœ ์ธํ•œ ๋‚œ๊ฐœ๋ฐœ์ด ์šฐ๋ ค๋˜๋Š” ์ง€์—ญ์ด๋‹ค. ์ตœ์ข…์ ์œผ๋กœ ํ•œ๋ฒˆ์˜ ๋ชจ์˜๋ฅผ ํ†ตํ•ด ํ˜„์žฌ์˜ ํ† ์ง€์ด์šฉ ๋ณด๋‹ค ์ ์–ด๋„ ํ•œ๊ฐ€์ง€ ์ด์ƒ์˜ ๋ชฉ์ ์—์„œ ์ข‹์€ ํผํฌ๋จผ์Šค๋ฅผ ๋ณด์ด๋Š” 100๊ฐœ์˜ ํŒŒ๋ ˆํ†  ์ตœ์  ๊ณ„ํš์•ˆ์„ ์ƒ์„ฑํ•˜์˜€๋‹ค. ๋˜ํ•œ 5๊ฐœ์˜ ๋Œ€ํ‘œ์ ์ธ ๊ณ„ํš์•ˆ์„ ์„ ์ •ํ•˜์—ฌ ์‚ฐ์‚ฌํƒœ๋ฆฌ์Šคํฌ ์ตœ์†Œํ™”์™€ ์ „ํ™˜๋Ÿ‰ ์ตœ์†Œํ™” ๊ฐ„์— ๋ฐœ์ƒํ•˜๋Š” ์ƒ์‡„ ํšจ๊ณผ๋ฅผ ์„ค๋ช…ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋Š” ๊ธฐํ›„๋ณ€ํ™”์™€ ๊ด€๋ จ๋œ ๊ณต๊ฐ„ ์ ์‘ ์ „๋žต์˜ ์ˆ˜๋ฆฝ, ๋ณด๋‹ค ํ–ฅ์ƒ๋œ ๊ฐœ๋ฐœ๊ณ„ํš์„ ์œ„ํ•œ ์˜์‚ฌ๊ฒฐ์ •์„ ํšจ๊ณผ์ ์œผ๋กœ ์ง€์›ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•˜์˜€๋‹ค. ๋…ผ๋ฌธ์˜ ์„ธ ๋ฒˆ์งธ ์žฅ์—์„œ๋Š” ๋ธ”๋ก ๊ทœ๋ชจ(neighborhood scale, 2m)์—์„œ ๋„์‹œ ๋‚ด ๋…น์ง€๊ณ„ํš์•ˆ์„ ๋ชจ์˜ํ•  ์ˆ˜ ์žˆ๋Š” ๊ณต๊ฐ„ ์ตœ์ ํ™” ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋…น์ง€ ๊ณต๊ฐ„์€ ๋„์‹œ๋ฏผ์˜ ์‚ถ์˜ ์งˆ์— ๊ฒฐ์ •์ ์ธ ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ธฐ ๋•Œ๋ฌธ์— ๋‹ค์–‘ํ•œ ๋„์‹œ ์žฌ์ƒ ๋ฐ ๊ฐœ๋ฐœ๊ณ„ํš์—๋Š” ๋…น์ง€์™€ ์ง ๊ฐ„์ ‘์ ์œผ๋กœ ๊ด€๋ จ๋œ ์ „๋žต์ด ํฌํ•จ๋œ๋‹ค. ๋…น์ง€ ๊ณต๊ฐ„์€ ๋„์‹œ์ง€์—ญ ๋‚ด์—์„œ ์—ด์„ฌ ํ˜„์ƒ ์™„ํ™”, ์œ ์ถœ๋Ÿ‰ ์ €๊ฐ, ์ƒํƒœ ๋„คํŠธ์›Œํฌ ์ฆ์ง„ ๋“ฑ ๋‹ค์–‘ํ•œ ๊ธ์ •์  ํšจ๊ณผ๊ฐ€ ์žˆ์Œ์ด ์•Œ๋ ค์ ธ ์žˆ์œผ๋‚˜, ๊ณต๊ฐ„ ๊ณ„ํš์˜ ๊ด€์ ์—์„œ ์ด๋Ÿฌํ•œ ๋‹ค์–‘ํ•œ ํšจ๊ณผ๋ฅผ ์ข…ํ•ฉ์ , ์ •๋Ÿ‰์ ์œผ๋กœ ๊ณ ๋ ค๋œ ์‚ฌ๋ก€๋Š” ๋งค์šฐ ๋ฏธํกํ•˜๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋น„์ง€๋ฐฐ ์ •๋ ฌ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜ II์— ๊ธฐ์ดˆํ•˜์—ฌ ๋…น์ง€์˜ ์ƒํƒœ์  ์—ฐ๊ฒฐ์„ฑ ์ฆ์ง„, ์—ด์„ฌ ํšจ๊ณผ ์™„ํ™”์™€ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ํšจ๊ณผ์™€ ์„ค์น˜์— ๋”ฐ๋ฅด๋Š” ๋น„์šฉ์„ ์ข…ํ•ฉ์ ์œผ๋กœ ๊ณ ๋ คํ•˜์—ฌ ์ ์ ˆํ•œ ๋…น์ง€์˜ ์œ ํ˜•๊ณผ ์œ„์น˜๋ฅผ ๊ฒฐ์ •ํ•œ ๋…น์ง€๊ณ„ํš์•ˆ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋ธ”๋ก ๊ทœ๋ชจ์˜ ๊ฐ€์ƒ์˜ ๋Œ€์ƒ์ง€์— ๋ณธ ์ตœ์ ํ™” ๋ชจ๋ธ์„ ์ ์šฉํ•จ์œผ๋กœ์จ 30๊ฐœ์˜ ํŒŒ๋ ˆํ†  ์ตœ์  ๋…น์ง€๊ณ„ํš์•ˆ์„ ์ƒ์„ฑํ•˜์˜€์œผ๋ฉฐ, ๊ฐ ๋ชฉ์  ๊ฐ„ ํผํฌ๋จผ์Šค๋ฅผ ๋น„๊ตํ•˜์—ฌ ๋…น์ง€์˜ ์—ด์„ฌ ์™„ํ™” ํšจ๊ณผ์™€ ์ƒํƒœ์  ์—ฐ๊ฒฐ์„ฑ ์ฆ์ง„ ํšจ๊ณผ ๊ฐ„์˜ ์ƒ์Šน ๊ด€๊ณ„ (synergistic relationship), ์ด๋Ÿฌํ•œ ๊ธ์ •์  ํšจ๊ณผ์™€ ๋น„์šฉ ์ ˆ๊ฐ ๊ฐ„์˜ ์ƒ์‡„ ํšจ๊ณผ (trade-off relationship)๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ๋˜ํ•œ ๋‹ค์–‘ํ•œ ๊ณ„ํš์•ˆ ์ค‘ ๋Œ€ํ‘œ์ ์ธ ํŠน์„ฑ์„ ์ง€๋‹ˆ๋Š” ๊ณ„ํš์•ˆ, ๋‹ค์ˆ˜์˜ ๊ณ„ํš์•ˆ์—์„œ ๊ณตํ†ต์ ์œผ๋กœ ๋…น์ง€ ์„ค์น˜๋ฅผ ์œ„ํ•ด ์„ ํƒ๋œ ์ฃผ์š” ํ›„๋ณด์ง€์—ญ ์—ญ์‹œ ๊ทœ๋ช…ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์‹œ๋œ ๋ชจ๋ธ์€ ๊ณ„ํš์•ˆ์˜ ์ˆ˜์ •์—์„œ๋ถ€ํ„ฐ ์ •๋Ÿ‰์  ํ‰๊ฐ€, ๊ณ„ํš์•ˆ ์„ ํƒ์— ์ด๋ฅด๋Š” ์ผ๋ จ์˜ ๊ธ์ •์ ์ธ ํ”ผ๋“œ๋ฐฑ ๊ณผ์ •์„ ์ˆ˜์—†์ด ๋ฐ˜๋ณตํ•จ์œผ๋กœ์จ ๊ธฐ์กด์˜ ๋…น์ง€๊ณ„ํš ๊ณผ์ •์„ ๊ฐœ์„ ํ•˜๋Š” ๋ฐ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ๋ชจ๋ธ์˜ ๊ฒฐ๊ณผ ์—ญ์‹œ ๋‹ค์ž๊ฐ„ ํ˜‘๋ ฅ์  ๋””์ž์ธ (co-design)์„ ์œ„ํ•œ ์ดˆ์•ˆ์œผ๋กœ์„œ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒํ•˜์˜€๋‹ค.The meeting of heterogeneous goals while staying within the constraints of spatial planning is a nonlinear problem that cannot be solved by linear methodologies. Instead, this problem can be solved using multi-objective optimization algorithms such as genetic algorithms (GA), simulated annealing (SA), ant colony optimization (ACO), etc., and research related to this field has been increasing rapidly. GA, in particular, are the most frequently applied spatial optimization algorithms and are known to search for a good solution within a reasonable time period by maintaining a balance between exploration and exploitation. However, despite its good performance and applicability, it has not adequately addressed recent urgent issues such as climate change adaptation, disaster management, and green infrastructure planning. It is criticized for concentrating on only the allocation of specific land use such as urban and protected areas, or on the site selection of a specific facility. Therefore, in this study, a series of spatial optimizations are proposed to address recent urgent issues such as climate change, disaster management, and urban greening by supplementing quantitative assessment methodologies to the spatial planning process based on GA and Non-dominated Sorting Genetic Algorithm II (NSGA II). This optimization model needs to be understood as a tool for providing a draft plan that quantitatively meets the essential requirements so that the stakeholders can collaborate smoothly in the planning process. Three types of spatial planning optimization models are classified according to urgent issues. Spatial resolution, planning objectives, and constraints were also configured differently according to relevant issues. Each spatial planning optimization model was arranged in the order of increasing spatial resolution. In the first chapter, the optimization model was proposed to simulate land use scenarios to adapt to climate change on a provincial scale. As climate change is an ongoing phenomenon, many recent studies have focused on adaptation to climate change from a spatial perspective. However, little is known about how changing the spatial composition of land use could improve resilience to climate change. Consideration of climate change impacts when spatially allocating land use could be a useful and fundamental long-term adaptation strategy, particularly for regional planning. Here climate adaptation scenarios were identified on the basis of existing extents of three land use classes using Multi-objective Genetic Algorithms (MOGA) for a 9,982 km2 region with 3.5 million inhabitants in South Korea. Five objectives were selected for adaptation based on predicted climate change impacts and regional economic conditions: minimization of disaster damageand existing land use conversionmaximization of rice yieldprotection of high-species-richness areasand economic value. The 17 Pareto land use scenarios were generated by six weighted combinations of the adaptation objectives. Most scenarios, although varying in magnitude, showed better performance than the current spatial land use composition for all adaptation objectives, suggesting that some alteration of current land use patterns could increase overall climate resilience. Given the flexible structure of the optimization model, it is expected that regional stakeholders would efficiently generate other scenarios by adjusting the model parameters (weighting combinations) or replacing the input data (impact maps) and selecting a scenario depending on their preference or a number of problem-related factors. In the second chapter, the optimization model was proposed to simulate land use scenarios for managing disaster damage due to climate change on local scale. Extreme landslides triggered by rainfall in hilly regions frequently lead to serious damage, including casualties and property loss. The frequency of landslides may increase under climate change, because of the increased variability of precipitation. Developing urban areas outside landslide risk zones is the most effective method of reducing or preventing damageplanning in real life is, however, a complex and nonlinear problem. For such multi-objective problems, GA may be the most appropriate optimization tool. Therefore, comprehensive land use allocation plans were suggested using the NSGA II to overcome multi-objective problems, including the minimization of landslide risk, minimization of change, and maximization of compactness. The study area is Pyeongchang-gun, the host city of the 2018 Winter Olympics in Korea, where high development pressure has resulted in an urban sprawl into the hazard zone that experienced a large-scale landslide in 2006. We obtained 100 Pareto plans that are better than the actual land use data for at least one objective, with five plans that explain the trade-offs between meeting the first and the second objectives mentioned above. The results can be used by decision makers for better urban planning and for climate change-related spatial adaptation. In the third chapter, the optimization model was proposed to simulate urban greening plans on a neighborhood scale. Green space is fundamental to the good quality of life of residents, and therefore urban planning or improvement projects often include strategies directly or indirectly related to greening. Although green spaces generate positive effects such as cooling and reduction of rainwater runoff, and are an ecological corridor, few studies have examined the comprehensive multiple effects of greening in the urban planning context. To fill this gap in this fields literature, this study seeks to identify a planning model that determines the location and type of green cover based on its multiple effects (e.g., cooling and enhancement of ecological connectivity) and the implementation cost using NSGA II. The 30 Pareto-optimal plans were obtained by applying our model to a hypothetical landscape on a neighborhood scale. The results showed a synergistic relationship between cooling and enhancement of connectivity, as well as a trade-off relationship between greenery effects and implementation cost. It also defined critical lots for urban greening that are commonly selected in various plans. This model is expected to contribute to the improvement of existing planning processes by repeating the positive feedback loop: from plan modification to quantitative evaluation and selection of better plans. These optimal plans can also be considered as options for co-design by related stakeholders.1. INTRODUCTION 2. CHAPTER 1: Modelling Spatial Climate Change Land use Adaptation with Multi-Objective Genetic Algorithms to Improve Resilience for Rice Yield and Species Richness and to Mitigate Disaster Risk 2.1. Introduction 2.2. Study area 2.3. Methods 2.4. Results 2.5. Discussion 2.6. References 2.7. Supplemental material 3. CHAPTER 2: Multi-Objective Land-Use Allocation Considering Landslide Risk under Climate Change: Case Study in Pyeongchang-gun, Korea 3.1. Introduction 3.2. Material and Methods 3.3. Results 3.4. Discussion 3.5. Conclusion 3.6. References 4. CHAPTER 3: Multi-Objective Planning Model for Urban Greening based on Optimization Algorithms 3.1. Introduction 3.2. Methods 3.3. Results 3.4. Discussion 3.5. Conclusion 3.6. References 3.7. Appendix 5. CONCLUSION REFERENCESDocto

    Creating Open Source Geodemographic Classifications for Higher Education Applications

    Get PDF
    This paper explores the use of geodemographic classifications to investigate the social, economic and spatial dimensions of participation in higher education. Education is a public service that confers very significant and tangible benefits upon receiving individuals: as such, we argue that understanding the geodemography of educational opportunity requires an application-specific classification, that exploits under-used educational data sources. We develop a classification for the UK higher education sector, and apply it to the Gospel Oak area of London. We discuss the wider merits of sector specific applications of geodemographics, with particular reference to issues of public service provision

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    SAT-CEP-monitor: An air quality monitoring software architecture combining complex event processing with satellite remote sensing

    Get PDF
    La contaminaciรณn del aire es un problema importante hoy en dรญa que causa graves daรฑos a la salud humana. Las รกreas urbanas son las mรกs afectadas por la degradaciรณn de la calidad del aire causada por las emisiones de gases antropogรฉnicos. Aunque existen mรบltiples propuestas para el monitoreo de la calidad del aire, en la mayorรญa de los casos, se imponen dos limitaciones: la imposibilidad de procesar datos en tiempo casi real (NRT) para enfoques de teledetecciรณn y la imposibilidad de llegar a รกreas de acceso limitado o baja cobertura de red para enfoques de datos terrestres. Proponemos una arquitectura de software que combina eficientemente el procesamiento de eventos complejos con datos de teledetecciรณn de varios sensores satelitales para monitorear la calidad del aire en NRT, brindando apoyo a los tomadores de decisiones. Ilustramos la soluciรณn propuesta calculando los niveles de calidad del aire para varias รกreas de Marruecos y Espaรฑa, extrayendo y procesando informaciรณn satelital en NRT. Este estudio tambiรฉn valida la calidad del aire medida por estaciones terrestres y datos de sensores satelitales.Air pollution is a major problem today that causes serious damage to human health. Urban areas are the most affected by the degradation of air quality caused by anthropogenic gas emissions. Although there are multiple proposals for air quality monitoring, in most cases, two limitations are imposed: the impossibility of processing data in Near Real-Time (NRT) for remote sensing approaches and the impossibility of reaching areas of limited accessibility or low network coverage for ground data approaches. We propose a software architecture that efficiently combines complex event processing with remote sensing data from various satellite sensors to monitor air quality in NRT, giving support to decision-makers. We illustrate the proposed solution by calculating the air quality levels for several areas of Morocco and Spain, extracting and processing satellite information in NRT. This study also validates the air quality measured by ground stations and satellite sensor data.This work was partially supported by the Spanish Ministry of Science and Innovation and the European Regional Development Fund (ERDF) under project FAME [RTI2018-093608-B-C33]. The corresponding author thanks the ERASMUS+ KA107 program for the grant and acknowledges the University of Cadiz for the academic supervision and their research facilities, grant number: 2017-1-ES01- KA107-037422 and 2018-1-ES01-KA107-049705. The authors of this work are also thankful to the Andalusian and Madrid regional governments for providing us with the NRT MGS data

    Forecasting Unemployment Rate Using a Neural Network with Fuzzy Inference System

    Get PDF
    Greece is a low-productivity economy with an ineffective welfare state, relying almost exclusively on low wages and social transfers. Failure to come to terms with this reality hampers both the appropriateness of EU recommendations and the Greek government's capacity to deal with unemployment. Rather than finding a job in a family business or through relationship contacts, young people stay unemployed. Nor can people move back to their village of origin so easily. The underground economy, and the mass of small companies which characterize the Greek economy are booming, on paper. One in three members of the workforce are "self-employed", compared to one in seven in the EU as a whole. (International Viewpoint) An unemployed person in Greece is 2,15 times more likely to suffer poverty than a person in employment. Yet in Greece there are perhaps even more influential factors in determining increased risk of poverty. Thus while unemployment is a crucial factor in the risk of poverty, it is neither the only nor the most significant factor. The paper presents a new technique in the field of unemployment modeling in order to forecast unemployment index. Techniques from the Artificial Neural Networks and from fuzzy logic have been combined to generate a neuro-fuzzy model. The input is a time series. Classical statistics measures are calculated in order to asses the model performance. Further the results are compared with an ARMA and an AR model.forecasting, neural network, unemployment

    A decision support system for integrated semi-centralised urban wastewater treatment systems

    Get PDF
    The importance of adequate water supply and sanitation infrastructure as cornerstones for the development of civilizations is undeniable. Although a strategy based on centralised infrastructure has proven to be successful in the past, in some circumstances such conventional systems are inappropriate for future needs. A Semi-centralised Urban Wastewater Treatment System (SUWWTS) may be considered a viable sustainable urban water management solution to promote water security. A SUWWTS merges regulations of traditional centralised systems with the concepts of close-loop and resource recovery of decentralised systems. However, research on the design and feasibility of implementing semi-centralised systems is in its infancy. This Thesis is a first attempt to articulate the complexity, to systematize and to automatize the design of a SUWWTS. Here we show a novel method, referred to as framework, for the development of SUWWTS with allowance for the socio-economic and geographic context of any urban area. To demonstrate the proposed framework a Decision Support System (DSS) was developed; its output is a recommended design comprised of several wastewater treatment plants, their respective technology, and their associated sewerage and reclaimed water distribution networks. The results demonstrate the capabilities and the usefulness of the DSS; it applies the design engineersโ€™ subjective preferences, such as regional technological inclinations and implementation strategies. The results from a feasibility study on the city of Rio de Janeiro validated and demonstrated how the DSS can be used to assist decision-makers. This Thesis discusses the framework, the DSS and the demonstration case. Overall, it will hopefully help both other researchers and practitioners by contributing to the discussion on how to promote urban water security, to decrease urban areasโ€™ dependency on ecosystem services whilst delivering better social welfare

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Modeling Land-Cover Types Using Multiple Endmember Spectral Mixture Analysis in a Desert City

    Get PDF
    Spectral mixture analysis is probably the most commonly used approach among sub-pixel analysis techniques. This method models pixel spectra as a linear combination of spectral signatures from two or more ground components. However, spectral mixture analysis does not account for the absence of one of the surface features or spectral variation within pure materials since it utilizes an invariable set of surface features. Multiple endmember spectral mixture analysis (MESMA), which addresses these issues by allowing endmembers to vary on a per pixel basis, was employed in this study to model Landsat ETM+ reflectance in the Phoenix metropolitan area. Image endmember spectra of vegetation, soils, and impervious surfaces were collected with the use of a fine resolution Quickbird image and the pixel purity index. This study employed 204 (=3x17x4) total four-endmember models for the urban subset and 96 (=6x6x2x4) total five-endmember models for the non-urban subset to identify fractions of soil, impervious surface, vegetation, and shade. The Pearson correlation between the fraction outputs from MESMA and reference data from Quickbird 60 cm resolution data for soil, impervious, and vegetation were 0.8030, 0.8632, and 0.8496 respectively. Results from this study suggest that the MESMA approach is effective in mapping urban land covers in desert cities at sub- pixel level.
    • โ€ฆ
    corecore