217 research outputs found

    Hardware implementation of non-bonded forces in molecular dynamics simulations

    Get PDF
    Molecular Dynamics is a computational method based on classical mechanics to describe the behavior of a molecular system. This method is used in biomolecular simulations, which are intended to contribute to the study and advance of nanotechnology, medicine, chemistry and biology. Software implementations of Molecular Dynamics simulations can spend most of time computing the non-bonded interactions. This work presents the design and implementation of an FPGA-based coprocessor that accelerates MD simulations by computing in parallel the non-bonded interactions, specifically, the van der Waals and the electrostatic interactions. These interactions are modeled as the Lennard-Jones 6-12 potential and the direct-space Ewald summation, respectively. In addition, this work introduces a novel variable transformation of the potential energy functions, and a novel interpolation method with pseudo-floating-point representation to compute the short-range forces. Also, it uses a combination of fixed-point and floating-point arithmetic to obtain the best of both representations. The FPGA coprocessor is a memory-mapped system connected to a host by PCI Express, and is provided with interruption capabilities to improve parallelization. Its main block is based on a single functional pipeline, and is connected via Avalon Bus to other peripherals such as the PCIe Hard-IP and the SG-DMA. It is implemented on an Altera¿s EP2AGX125EF35C4 device, can process 16k particles, and is configured to store up to 16 different types of particles. Simulations in a custom C-application for MD that only computes non-bonded forces become up to 12.5x faster using the FPGA coprocessor when considering 12500 atoms.PregradoINGENIERO(A) EN ELECTRÓNIC

    Reconfigurable Antenna Systems: Platform implementation and low-power matters

    Get PDF
    Antennas are a necessary and often critical component of all wireless systems, of which they share the ever-increasing complexity and the challenges of present and emerging trends. 5G, massive low-orbit satellite architectures (e.g. OneWeb), industry 4.0, Internet of Things (IoT), satcom on-the-move, Advanced Driver Assistance Systems (ADAS) and Autonomous Vehicles, all call for highly flexible systems, and antenna reconfigurability is an enabling part of these advances. The terminal segment is particularly crucial in this sense, encompassing both very compact antennas or low-profile antennas, all with various adaptability/reconfigurability requirements. This thesis work has dealt with hardware implementation issues of Radio Frequency (RF) antenna reconfigurability, and in particular with low-power General Purpose Platforms (GPP); the work has encompassed Software Defined Radio (SDR) implementation, as well as embedded low-power platforms (in particular on STM32 Nucleo family of micro-controller). The hardware-software platform work has been complemented with design and fabrication of reconfigurable antennas in standard technology, and the resulting systems tested. The selected antenna technology was antenna array with continuously steerable beam, controlled by voltage-driven phase shifting circuits. Applications included notably Wireless Sensor Network (WSN) deployed in the Italian scientific mission in Antarctica, in a traffic-monitoring case study (EU H2020 project), and into an innovative Global Navigation Satellite Systems (GNSS) antenna concept (patent application submitted). The SDR implementation focused on a low-cost and low-power Software-defined radio open-source platform with IEEE 802.11 a/g/p wireless communication capability. In a second embodiment, the flexibility of the SDR paradigm has been traded off to avoid the power consumption associated to the relevant operating system. Application field of reconfigurable antenna is, however, not limited to a better management of the energy consumption. The analysis has also been extended to satellites positioning application. A novel beamforming method has presented demonstrating improvements in the quality of signals received from satellites. Regarding those who deal with positioning algorithms, this advancement help improving precision on the estimated position

    Recent Advances in Embedded Computing, Intelligence and Applications

    Get PDF
    The latest proliferation of Internet of Things deployments and edge computing combined with artificial intelligence has led to new exciting application scenarios, where embedded digital devices are essential enablers. Moreover, new powerful and efficient devices are appearing to cope with workloads formerly reserved for the cloud, such as deep learning. These devices allow processing close to where data are generated, avoiding bottlenecks due to communication limitations. The efficient integration of hardware, software and artificial intelligence capabilities deployed in real sensing contexts empowers the edge intelligence paradigm, which will ultimately contribute to the fostering of the offloading processing functionalities to the edge. In this Special Issue, researchers have contributed nine peer-reviewed papers covering a wide range of topics in the area of edge intelligence. Among them are hardware-accelerated implementations of deep neural networks, IoT platforms for extreme edge computing, neuro-evolvable and neuromorphic machine learning, and embedded recommender systems

    A Novel Real-time Approach to Unified Power Flow Controller Validation

    Get PDF
    This paper presents the development of a real-time hardware/software laboratory to interface a soft real-time power system simulator with multiple unified power flow controllers (UPFC) via hardware-in-the-loop (HIL) to study their dynamic responses and validate control and placement approaches. This paper describes a unique laboratory facility that enables large-scale, soft real-time power system simulation coupled with the true physical behavior of a UPFC as opposed to the controller response captured by many other real-time simulators. The HIL line includes a synchronous machine, a UPFC, and a programmable load to reproduce the physical dynamics of the UPFC sub-network

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    An architecture and technology for Ambient Intelligence Node

    Get PDF
    The era of separate networks is over. The existing technology leaders are preparing a big change in recreation of environment around us. There are several faces for this change. Names like Ambient Intelligence, Ambient Network, IP Multimedia Subsystem and others were created all over the Globe. Regardless of which name is used the new network will combine three main functional principles---it will be: contextual aware, ubiquitous access and intelligent interfaces unified network. Within this thesis two major aspects are defined. First, the definition of the Ambient Intelligence Environment concept is presented. Secondly the architecture vectors for the technology are named. A short overview of the existing technology is followed by details for the chosen technology---FPGA. The overall specifications are incorporated in the design and demonstration of a basic Ambient Intelligence Node created in the System on the Chip (SoC) FPGA technology

    Distributed computing in space-based wireless sensor networks

    Get PDF
    This thesis investigates the application of distributed computing in general and wireless sensor networks in particular to space applications. Particularly, the thesis addresses issues related to the design of "space-based wireless sensor networks" that consist of ultra-small satellite nodes flying together in close formations. The design space of space-based wireless sensor networks is explored. Consequently, a methodology for designing space-based wireless sensor networks is proposed that is based on a modular architecture. The hardware modules take the form of 3-D Multi-Chip Modules (MCM). The design of hardware modules is demonstrated by designing a representative on-board computer module. The onboard computer module contains an FPGA which includes a system-on-chip architecture that is based on soft components and provides a degree of flexibility at the later stages of the design of the mission.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore