518 research outputs found

    A Realistic Simulation for Swarm UAVs and Performance Metrics for Operator User Interfaces

    Get PDF
    Robots have been utilized to support disaster mitigation missions through exploration of areas that are either unreachable or hazardous for human rescuers [1]. The great potential for robotics in disaster mitigation has been recognized by the research community and during the last decade, a lot of research has been focused on developing robotic systems for this purpose. In this thesis, we present a description of the usage and classification of UAVs and performance metrics that affect controlling of UAVs. We also present new contributions to the UAV simulator developed by ECSL and RRL: the integration of flight dynamics of Hummingbird quadcopter, and distance optimization using a Genetic algorithm

    Augmented Reality and Robotics: A Survey and Taxonomy for AR-enhanced Human-Robot Interaction and Robotic Interfaces

    Get PDF
    This paper contributes to a taxonomy of augmented reality and robotics based on a survey of 460 research papers. Augmented and mixed reality (AR/MR) have emerged as a new way to enhance human-robot interaction (HRI) and robotic interfaces (e.g., actuated and shape-changing interfaces). Recently, an increasing number of studies in HCI, HRI, and robotics have demonstrated how AR enables better interactions between people and robots. However, often research remains focused on individual explorations and key design strategies, and research questions are rarely analyzed systematically. In this paper, we synthesize and categorize this research field in the following dimensions: 1) approaches to augmenting reality; 2) characteristics of robots; 3) purposes and benefits; 4) classification of presented information; 5) design components and strategies for visual augmentation; 6) interaction techniques and modalities; 7) application domains; and 8) evaluation strategies. We formulate key challenges and opportunities to guide and inform future research in AR and robotics

    Multi-Robot Systems: Challenges, Trends and Applications

    Get PDF
    This book is a printed edition of the Special Issue entitled “Multi-Robot Systems: Challenges, Trends, and Applications” that was published in Applied Sciences. This Special Issue collected seventeen high-quality papers that discuss the main challenges of multi-robot systems, present the trends to address these issues, and report various relevant applications. Some of the topics addressed by these papers are robot swarms, mission planning, robot teaming, machine learning, immersive technologies, search and rescue, and social robotics

    Can Urban Air Mobility become reality? Opportunities, challenges and selected research results

    Full text link
    Urban Air Mobility (UAM) is a new air transportation system for passengers and cargo in urban environments, enabled by new technologies and integrated into multimodal transportation systems. The vision of UAM comprises the mass use in urban and suburban environments, complementing existing transportation systems and contributing to the decarbonization of the transport sector. Initial attempts to create a market for urban air transportation in the last century failed due to lack of profitability and community acceptance. Technological advances in numerous fields over the past few decades have led to a renewed interest in urban air transportation. UAM is expected to benefit users and to also have a positive impact on the economy by creating new markets and employment opportunities for manufacturing and operation of UAM vehicles and the construction of related ground infrastructure. However, there are also concerns about noise, safety and security, privacy and environmental impacts. Therefore, the UAM system needs to be designed carefully to become safe, affordable, accessible, environmentally friendly, economically viable and thus sustainable. This paper provides an overview of selected key research topics related to UAM and how the German Aerospace Center (DLR) contributed to this research in the project "HorizonUAM - Urban Air Mobility Research at the German Aerospace Center (DLR)". Selected research results that support the realization of the UAM vision are briefly presented.Comment: 20 pages, 7 figures, project HorizonUA

    Mixed Reality Applications for Safety Trainings in Wind Energy Sector: A Case Study

    Get PDF
    The international renewable energy agency (IRENA) forecast that the wind industry will grow at an exponential rate in the coming decades. This enormous growth has created the need and demand for qualified workforce which includes engineers, technicians, and managers in the wind energy sector. Thus, the wind energy training sector needs to implement some innovative technologies in both safety and technical trainings to meet the growing industry demands and to create a qualified workforce. However, before finalizing on any innovative solution for safety training, the challenges that the wind energy training sector faces need to be analyzed. The biggest challenges for the wind energy training sector is to train the workers to work safely with large scale wind turbine structure and its components, working safely with high voltage and working in harsh marine environments. Wind power workers are often exposed to hazards that can result in fatalities or serious injuries due to these challenges. Therefore, the implemented innovative technology must ensure safety and improve efficiency of operations by being aware of the risks associated. However, the wind energy training sector is searching for cost effective solution especially related to remote training, when the technician is not able to attend the training physically. Moreover, the wind energy training sector is also looking for technology that can reduce human error and also reduce cognitive workload. Therefore, the use of innovative technology like mixed reality (MR) might provide potential benefits.MR includes the use of both the virtual reality (VR) which is a simulated immersive experience and the use of augmented reality (AR) which allows the person to see the real world, additionally overlaid with digital graphics and information in real time. However, there is a lack of clarity on how to effectively design mixed reality technologies in safety training of wind sector. There are technical challenges and gaps to identify the suitable hardware platform, suitable software platform and the associated tracking techniques. The purpose of this thesis is to develop: (1) the workflow, (2) the framework which will help to design mixed reality technologies in safety training of wind sector. Also to develop, (3) flowchart and (4) worksheet which will help to identify the critical training modules/scenarios and to identify the suitable type of technology (AR/VR/MR) needed for a particular scenario along with the suitable hardware platform, suitable software platform and associated tracking technique. Finally, to develop (5) demo MR model to demonstrate and validate the developed workflow and to understand the associated practical challenges like complexity of such mixed reality technologies and user familiarity. In order to achieve the purpose of this thesis, a six-step methodology was applied which includes: (1) system analysis, (2) use case analysis, (3) conceptualize, (4) computerize, (5) construct and (6) verify, validate and visualize. The case study started with system analysis which mainly deals with extracting the industrial needs and requirements. The system analysis includes two sub steps. First, is to perform a detailed systematic literature review (SLR) to understand the state of art in VR/AR/MR in the wind industry and other relevant industry. Second, an empirical exploration were the author attended a 5day GWO wind safety training at the Eigersund energy hub to personally experience and understand the training scenarios which will be crucial and beneficial to have a mixed reality application from both technician and company perspective. The use case analysis deals with the creation of the case context which includes selecting the critical training module based on accident data from literature review and to identify one similar framework in other engineering industry. The conceptualize step involves in classifying the selected critical module into training tasks and to identity the risk associated with each training tasks. It also involves in performing the concept study before building the MR model and to develop the scenario modelling chart. The computerize step involves in developing the actual 3D model and the demo MR model. The construct step involves the creation of the flowchart, worksheet, workflow and the framework and the sixth step is to validate and verify the research outputs. Consequently, as the result of the six-step methodology this thesis has provided new knowledge regarding four concepts: (1) sequence or workflow (2) the need for continuous and iterative process to design mixed reality (3) the logic and the rules for the selection of technical specifications (4) worksheet to classify the scenarios and to define training complexity. The thesis concludes that the safety training provider needs to rigorously follow the developed (1) mixed reality analysis (MRA) workflow, (2) mixed reality analysis (MRA) framework, (3) mixed reality technical specification (MRTS) flowchart and the (4) mixed reality technical specification (MRTS) worksheet. The MRA workflow provides the sequence that can enable the industrial practitioner to design MR application in a cost-effective and fit for purpose manner which includes screening out low risk scenarios. The MRA framework clearly indicates that the design to implement MR is an iterative process based on user needs and user level of familiarity. The MRTS flowchart provides the logic to identify the suitable type of technology for a particular scenario, along with the suitable hardware platform, suitable software platform and associated tracking technique. The MRTS flowchart must be used along with the MRTS worksheet which can help to identify the critical training modules/scenarios and further classify them to check if implementation of mixed realities is needed or not. In future, the complexity associated with such technologies must be studied after implementing in real-time. Based on the case study AR/VR should be designed to make work simpler and error free. However, in some cases if using the technology is creating unintended consequences and complexity, then the technology might not be used in such cases

    A critical review of digital technology innovations for early warning of water-related disease outbreaks associated with climatic hazards

    Get PDF
    Water-related climatic disasters pose a significant threat to human health due to the potential of disease outbreaks, which are exacerbated by climate change. Therefore, it is crucial to predict their occurrence with sufficient lead time to allow for contingency plans to reduce risks to the population. Opportunities to address this challenge can be found in the rapid evolution of digital technologies. This study conducted a critical analysis of recent publications investigating advanced technologies and digital innovations for forecasting, alerting, and responding to water-related extreme events, particularly flooding, which is often linked to disaster-related disease outbreaks. The results indicate that certain digital innovations, such as portable and local sensors integrated with web-based platforms are new era for predicting events, developing control strategies and establishing early warning systems. Other technologies, such as augmented reality, virtual reality, and social media, can be more effective for monitoring flood spread, disseminating before/during the event information, and issuing warnings or directing emergency responses. The study also identified that the collection and translation of reliable data into information can be a major challenge for effective early warning systems and the adoption of digital innovations in disaster management. Augmented reality, and digital twin technologies should be further explored as valuable tools for better providing of communicating complex information on disaster development and response strategies to a wider range of audiences, particularly non-experts. This can help to increase community engagement in designing and operating effective early warning systems that can reduce the health impact of climatic disasters

    Human-Machine Interfaces for Service Robotics

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    A critical review for the application of Cutting-edge Digital Visualisation Technologies for Effective Urban Flood Risk Management

    Get PDF
    Cutting-edge digital visualisation tools (CDVT) are playing an increasingly important role in improving urban flood risk management. However, there is a paucity of comprehensive research examining their role across all stages of urban flood risk management. To address, this study conducts an integrated critical review to identify the application of CDVT and assess their contribution to the prevention, mitigation, preparation, response, and recovery stages of flood risk management. The results show that virtual reality, augmented reality, and digital twin technologies are the primary CDVT used in urban flood visualisation, with virtual reality being the most frequently used. The focus of urban flood visualisation studies has been primarily on preparation and mitigation stages. However, there is a need to investigate the application of these technologies in the entire urban water cycle. Furthermore, there is potential for greater adoption of digital twin, especially in simulating urban flood inundation and flood evacuation routes. Integrating real-time data, data-driven modeling, and CDVT can significantly improve real-time flood forecasting. This benefits stakeholders and the public by enhancing early warning systems, preparedness, and flood resilience, leading to more effective flood risk management and reduced impacts on communities
    • …
    corecore