4,261 research outputs found

    An architecture for secure searchable cloud storage

    Get PDF
    Includes abstract.Includes bibliographical references.Cloud Computing is a relatively new and appealing concept; however, users may not fully trust Cloud Providers with their data and can be reluctant to store their files on Cloud Storage Services. The problem is that Cloud Providers allow users to store their information on the provider's infrastructure with compliance to their terms and conditions, however all security is handled by the provider and generally the details of how this is done are not disclosed. This thesis describes a solution that allows users to securely store data all a public cloud, while also providing a mechanism to allow for searchability through their encrypted data. Users are able to submit encrypted keyword queries and, through a symmetric searchable encryption scheme, the system retrieves a list of files with such keywords contained within the cloud storage medium

    State of The Art and Hot Aspects in Cloud Data Storage Security

    Get PDF
    Along with the evolution of cloud computing and cloud storage towards matu- rity, researchers have analyzed an increasing range of cloud computing security aspects, data security being an important topic in this area. In this paper, we examine the state of the art in cloud storage security through an overview of selected peer reviewed publications. We address the question of defining cloud storage security and its different aspects, as well as enumerate the main vec- tors of attack on cloud storage. The reviewed papers present techniques for key management and controlled disclosure of encrypted data in cloud storage, while novel ideas regarding secure operations on encrypted data and methods for pro- tection of data in fully virtualized environments provide a glimpse of the toolbox available for securing cloud storage. Finally, new challenges such as emergent government regulation call for solutions to problems that did not receive enough attention in earlier stages of cloud computing, such as for example geographical location of data. The methods presented in the papers selected for this review represent only a small fraction of the wide research effort within cloud storage security. Nevertheless, they serve as an indication of the diversity of problems that are being addressed

    HardIDX: Practical and Secure Index with SGX

    Full text link
    Software-based approaches for search over encrypted data are still either challenged by lack of proper, low-leakage encryption or slow performance. Existing hardware-based approaches do not scale well due to hardware limitations and software designs that are not specifically tailored to the hardware architecture, and are rarely well analyzed for their security (e.g., the impact of side channels). Additionally, existing hardware-based solutions often have a large code footprint in the trusted environment susceptible to software compromises. In this paper we present HardIDX: a hardware-based approach, leveraging Intel's SGX, for search over encrypted data. It implements only the security critical core, i.e., the search functionality, in the trusted environment and resorts to untrusted software for the remainder. HardIDX is deployable as a highly performant encrypted database index: it is logarithmic in the size of the index and searches are performed within a few milliseconds rather than seconds. We formally model and prove the security of our scheme showing that its leakage is equivalent to the best known searchable encryption schemes. Our implementation has a very small code and memory footprint yet still scales to virtually unlimited search index sizes, i.e., size is limited only by the general - non-secure - hardware resources

    Achieving Secure and Efficient Cloud Search Services: Cross-Lingual Multi-Keyword Rank Search over Encrypted Cloud Data

    Full text link
    Multi-user multi-keyword ranked search scheme in arbitrary language is a novel multi-keyword rank searchable encryption (MRSE) framework based on Paillier Cryptosystem with Threshold Decryption (PCTD). Compared to previous MRSE schemes constructed based on the k-nearest neighbor searcha-ble encryption (KNN-SE) algorithm, it can mitigate some draw-backs and achieve better performance in terms of functionality and efficiency. Additionally, it does not require a predefined keyword set and support keywords in arbitrary languages. However, due to the pattern of exact matching of keywords in the new MRSE scheme, multilingual search is limited to each language and cannot be searched across languages. In this pa-per, we propose a cross-lingual multi-keyword rank search (CLRSE) scheme which eliminates the barrier of languages and achieves semantic extension with using the Open Multilingual Wordnet. Our CLRSE scheme also realizes intelligent and per-sonalized search through flexible keyword and language prefer-ence settings. We evaluate the performance of our scheme in terms of security, functionality, precision and efficiency, via extensive experiments
    corecore