12,938 research outputs found

    Memory-efficient architecture of 2-D dual-mode discrete wavelet transform using lifting scheme for motion-JPEG2000

    Get PDF
    [[abstract]]In this work, we propose a memory-efficient architecture of lifting based two-dimensional discrete wavelet transform (2D DWT) for motion-JPEG2000. The proposed 2D DWT architecture consists of a 1D row processor, internal memory, and a 1D column processor. The main advantage of this 2D DWT is to reduce the internal memory requirement significantly. For an NtimesN image, only 2N and 4N sizes of internal memory are required for the 5/3 and 9/7 filters, respectively, to perform the one-level 2D DWT decomposition. Moreover, it supports both lossless and lossy operation for 5/3 and 9/7 filters with high operation speed. The proposed 2D DWT surpasses the existed lifting-based designs in the aspects of low internal memory requirement. It is suitable for VLSI implementation and can support various real-time image/video applications such as JPEG2000, motion-JPEG2000, MPEG-4 still texture object decoding, and wavelet-based scalable video coding.[[notice]]需補會議日期、性質、主辦單位[[conferencedate]]20090524~2009052

    Fabric defect detection using the wavelet transform in an ARM processor

    Get PDF
    Small devices used in our day life are constructed with powerful architectures that can be used for industrial applications when requiring portability and communication facilities. We present in this paper an example of the use of an embedded system, the Zeus epic 520 single board computer, for defect detection in textiles using image processing. We implement the Haar wavelet transform using the embedded visual C++ 4.0 compiler for Windows CE 5. The algorithm was tested for defect detection using images of fabrics with five types of defects. An average of 95% in terms of correct defect detection was obtained, achieving a similar performance than using processors with float point arithmetic calculations

    A VLSI architecture of JPEG2000 encoder

    Get PDF
    Copyright @ 2004 IEEEThis paper proposes a VLSI architecture of JPEG2000 encoder, which functionally consists of two parts: discrete wavelet transform (DWT) and embedded block coding with optimized truncation (EBCOT). For DWT, a spatial combinative lifting algorithm (SCLA)-based scheme with both 5/3 reversible and 9/7 irreversible filters is adopted to reduce 50% and 42% multiplication computations, respectively, compared with the conventional lifting-based implementation (LBI). For EBCOT, a dynamic memory control (DMC) strategy of Tier-1 encoding is adopted to reduce 60% scale of the on-chip wavelet coefficient storage and a subband parallel-processing method is employed to speed up the EBCOT context formation (CF) process; an architecture of Tier-2 encoding is presented to reduce the scale of on-chip bitstream buffering from full-tile size down to three-code-block size and considerably eliminate the iterations of the rate-distortion (RD) truncation.This work was supported in part by the China National High Technologies Research Program (863) under Grant 2002AA1Z142

    Real-time portable system for fabric defect detection using an ARM processor

    Get PDF
    Modern textile industry seeks to produce textiles as little defective as possible since the presence of defects can decrease the final price of products from 45% to 65%. Automated visual inspection (AVI) systems, based on image analysis, have become an important alternative for replacing traditional inspections methods that involve human tasks. An AVI system gives the advantage of repeatability when implemented within defined constrains, offering more objective and reliable results for particular tasks than human inspection. Costs of automated inspection systems development can be reduced using modular solutions with embedded systems, in which an important advantage is the low energy consumption. Among the possibilities for developing embedded systems, the ARM processor has been explored for acquisition, monitoring and simple signal processing tasks. In a recent approach we have explored the use of the ARM processor for defects detection by implementing the wavelet transform. However, the computation speed of the preprocessing was not yet sufficient for real time applications. In this approach we significantly improve the preprocessing speed of the algorithm, by optimizing matrix operations, such that it is adequate for a real time application. The system was tested for defect detection using different defect types. The paper is focused in giving a detailed description of the basis of the algorithm implementation, such that other algorithms may use of the ARM operations for fast implementations
    corecore