61,612 research outputs found

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Development of Economic Water Usage Sensor and Cyber-Physical Systems Co-Simulation Platform for Home Energy Saving

    Get PDF
    In this thesis, two Cyber-Physical Systems (CPS) approaches were considered to reduce residential building energy consumption. First, a flow sensor was developed for residential gas and electric storage water heaters. The sensor utilizes unique temperature changes of tank inlet and outlet pipes upon water draw to provide occupant hot water usage. Post processing of measured pipe temperature data was able to detect water draw events. Conservation of energy was applied to heater pipes to determine relative internal water flow rate based on transient temperature measurements. Correlations between calculated flow and actual flow were significant at a 95% confidence level. Using this methodology, a CPS water heater controller can activate existing residential storage water heaters according to occupant hot water demand. The second CPS approach integrated an open-source building simulation tool, EnergyPlus, into a CPS simulation platform developed by the National Institute of Standards and Technology (NIST). The NIST platform utilizes the High Level Architecture (HLA) co-simulation protocol for logical timing control and data communication. By modifying existing EnergyPlus co-simulation capabilities, NIST’s open-source platform was able to execute an uninterrupted simulation between a residential house in EnergyPlus and an externally connected thermostat controller. The developed EnergyPlus wrapper for HLA co-simulation can allow active replacement of traditional real-time data collection for building CPS development. As such, occupant sensors and simple home CPS product can allow greater residential participation in energy saving practices, saving up to 33% on home energy consumption nationally

    Documenting Bronze Age Akrotiri on Thera using laser scanning, image-based modelling and geophysical prospection

    Get PDF
    The excavated architecture of the exceptional prehistoric site of Akrotiri on the Greek island of Thera/Santorini is endangered by gradual decay, damage due to accidents, and seismic shocks, being located on an active volcano in an earthquake-prone area. Therefore, in 2013 and 2014 a digital documentation project has been conducted with support of the National Geographic Society in order to generate a detailed digital model of Akrotiri’s architecture using terrestrial laser scanning and image-based modeling. Additionally, non-invasive geophysical prospection has been tested in order to investigate its potential to explore and map yet buried archaeological remains. This article describes the project and the generated results

    Digital technologies for virtual recomposition : the case study of Serpotta stuccoes

    Get PDF
    The matter that lies beneath the smooth and shining surface of stuccoes of the Serpotta family, who used to work in Sicily from 1670 to 1730, has been thoroughly studied in previous papers, disclosing the deep, even if empirical, knowledge of materials science that guided the artists in creating their master- works. In this work the attention is focused on the solid perspective and on the scenographic sculpture by Giacomo Serpotta, who is acknowledged as the leading exponent of the School. The study deals with some particular works of the artist, the so-called "teatrini" (Toy Theater), made by him for the San Lorenzo Oratory in Palermo. On the basis of archive documents and previous analogical photogrammetric plotting, integrated with digital solutions and methodologies of computer- based technologies, the study investigates and interprets the geometric-formal genesis of the examined works of art, until the prototyping of the whole scenic apparatus.peer-reviewe

    Advances in computational modelling for personalised medicine after myocardial infarction

    Get PDF
    Myocardial infarction (MI) is a leading cause of premature morbidity and mortality worldwide. Determining which patients will experience heart failure and sudden cardiac death after an acute MI is notoriously difficult for clinicians. The extent of heart damage after an acute MI is informed by cardiac imaging, typically using echocardiography or sometimes, cardiac magnetic resonance (CMR). These scans provide complex data sets that are only partially exploited by clinicians in daily practice, implying potential for improved risk assessment. Computational modelling of left ventricular (LV) function can bridge the gap towards personalised medicine using cardiac imaging in patients with post-MI. Several novel biomechanical parameters have theoretical prognostic value and may be useful to reflect the biomechanical effects of novel preventive therapy for adverse remodelling post-MI. These parameters include myocardial contractility (regional and global), stiffness and stress. Further, the parameters can be delineated spatially to correspond with infarct pathology and the remote zone. While these parameters hold promise, there are challenges for translating MI modelling into clinical practice, including model uncertainty, validation and verification, as well as time-efficient processing. More research is needed to (1) simplify imaging with CMR in patients with post-MI, while preserving diagnostic accuracy and patient tolerance (2) to assess and validate novel biomechanical parameters against established prognostic biomarkers, such as LV ejection fraction and infarct size. Accessible software packages with minimal user interaction are also needed. Translating benefits to patients will be achieved through a multidisciplinary approach including clinicians, mathematicians, statisticians and industry partners

    ANN for Predicting DNA Lung Cancer

    Get PDF
    Abstract: Lung cancer is the top reason of cancer-associated deaths globally. Surgery is the typical treatment for early-stage non-small cell lung cancer (NSCLC). Advancement in the knowledge of the biology of non-small cell lung cancer has shown molecular evidence used for systemic cancer therapy aiming metastatic disease, with a significant impact on patients’ overall survival (OS) and eminence of life. Though, a biopsy of overt metastases is an invasive technique restricted to assured positions and not effortlessly satisfactory in the clinic. The examination of peripheral blood samples of cancer patients embodies a new basis of cancer-derived material, recognized as liquid biopsy, and its constituents (circulating tumour cells (CTCS), circulating free DNA (cfDNA), exosomes, and tumour-educated platelets (TEP)) may be gotten from nearly any body liquids. These constituents have shown to imitate features of the status of both the primary and metastatic diseases, aiding the clinicians to go towards a tailored medicine. In this paper, the reasons of lung cancer will be recognized and the risk elements that initiated the increase of infection, for instance Smoking, Disclosure to secondhand smoke, Disclosure to radon gas, Disclosure to asbestos and other compounds, Family past history of lung cancer, and decrease of the spread of disease and approaches of handling and prevention of lung cancer

    Augmenting forearm crutches with wireless sensors for lower limb rehabilitation

    No full text
    Forearm crutches are frequently used in the rehabilitation of an injury to the lower limb. The recovery rate is improved if the patient correctly applies a certain fraction of their body weight (specified by a clinician) through the axis of the crutch, referred to as partial weight bearing (PWB). Incorrect weight bearing has been shown to result in an extended recovery period or even cause further damage to the limb. There is currently no minimally invasive tool for long-term monitoring of a patient's PWB in a home environment. This paper describes the research and development of an instrumented forearm crutch that has been developed to wirelessly and autonomously monitor a patient's weight bearing over the full period of their recovery, including its potential use in a home environment. A pair of standard forearm crutches are augmented with low-cost off-the-shelf wireless sensor nodes and electronic components to provide indicative measurements of the applied weight, crutch tilt and hand position on the grip. Data are wirelessly transmitted between crutches and to a remote computer (where they are processed and visualized in LabVIEW), and the patient receives biofeedback by means of an audible signal when they put too much or too little weight through the crutch. The initial results obtained highlight the capability of the instrumented crutch to support physiotherapists and patients in monitoring usage
    • 

    corecore