485 research outputs found

    Deliverable JRA1.1: Evaluation of current network control and management planes for multi-domain network infrastructure

    Get PDF
    This deliverable includes a compilation and evaluation of available control and management architectures and protocols applicable to a multilayer infrastructure in a multi-domain Virtual Network environment.The scope of this deliverable is mainly focused on the virtualisation of the resources within a network and at processing nodes. The virtualization of the FEDERICA infrastructure allows the provisioning of its available resources to users by means of FEDERICA slices. A slice is seen by the user as a real physical network under his/her domain, however it maps to a logical partition (a virtual instance) of the physical FEDERICA resources. A slice is built to exhibit to the highest degree all the principles applicable to a physical network (isolation, reproducibility, manageability, ...). Currently, there are no standard definitions available for network virtualization or its associated architectures. Therefore, this deliverable proposes the Virtual Network layer architecture and evaluates a set of Management- and Control Planes that can be used for the partitioning and virtualization of the FEDERICA network resources. This evaluation has been performed taking into account an initial set of FEDERICA requirements; a possible extension of the selected tools will be evaluated in future deliverables. The studies described in this deliverable define the virtual architecture of the FEDERICA infrastructure. During this activity, the need has been recognised to establish a new set of basic definitions (taxonomy) for the building blocks that compose the so-called slice, i.e. the virtual network instantiation (which is virtual with regard to the abstracted view made of the building blocks of the FEDERICA infrastructure) and its architectural plane representation. These definitions will be established as a common nomenclature for the FEDERICA project. Other important aspects when defining a new architecture are the user requirements. It is crucial that the resulting architecture fits the demands that users may have. Since this deliverable has been produced at the same time as the contact process with users, made by the project activities related to the Use Case definitions, JRA1 has proposed a set of basic Use Cases to be considered as starting point for its internal studies. When researchers want to experiment with their developments, they need not only network resources on their slices, but also a slice of the processing resources. These processing slice resources are understood as virtual machine instances that users can use to make them behave as software routers or end nodes, on which to download the software protocols or applications they have produced and want to assess in a realistic environment. Hence, this deliverable also studies the APIs of several virtual machine management software products in order to identify which best suits FEDERICA’s needs.Postprint (published version

    A Quality of Service Framework for Internet Share Trading

    Get PDF
    The recent Quality of Service (QoS) architecture proposed by the Internet Engineering Task Force (IETF) enables a set of new network services providing possible solutions to improve the quality of the Internet-based services. The interest of this research is to find a customizable QoS network solution for the Internet based share trading business by deploying these QoS architectures in order to address the quality issues in the Internet Share Trading Business. The construction of the QoS theoretical framework begins with the identification of the Internet service capabilities required by the Internet share trading business through a case study. The appropriate QoS architectural design is selected through matching the existing QoS architectures with the identified service capabilities. The QoS technological strategies and QoS capabilities are thus derived from the selected QoS architectural design. Additionally, the effectiveness of the proposed QoS architectural design is evaluated against the current implementation by using computer simulation

    Performance of MPLS-based Virtual Private Networks and Classic Virtual Private Networks Using Advanced Metrics

    Get PDF
    Multiprotocol Label Switching (MPLS) is effective in managing and utilizing available network bandwidth. It has advanced security features and a lower time delay. The existing literature has covered the performance of MPLS-based networks in relation to conventional Internet Protocol (IP) networks. But, too few literatures exist on the performance of MPLS-based Virtual Private Networks (VPN) in relation to traditional VPN networks. In this paper, a comparison is made between the effectiveness of the MPLS-VPN network and a classic VPN network using simulation studies done on OPNET®. The performance metrics used to carry out the comparison include; End to End Delay, Voice Packet Sent/Received and Label Switched Path’s Traffic. The simulation study was carried out with Voice over Internet Protocol (VoIP) as the test bed. The result of the study showed that MPLS-based VPN networks outperform classic VPN networks

    IP-based virtual private networks and proportional quality of service differentiation

    Get PDF
    IP-based virtual private networks (VPNs) have the potential of delivering cost-effective, secure, and private network-like services. Having surveyed current enabling techniques, an overall picture of IP VPN implementations is presented. In order to provision the equivalent quality of service (QoS) of legacy connection-oriented layer 2 VPNs (e.g., Frame Relay and ATM), IP VPNs have to overcome the intrinsically best effort characteristics of the Internet. Subsequently, a hierarchical QoS guarantee framework for IP VPNs is proposed, stitching together development progresses from recent research and engineering work. To differentiate IP VPN QoS, the proportional QoS differentiation model, whose QoS specification granularity compromises that of IntServ and Diffserv, emerges as a potential solution. The investigation of its claimed capability of providing the predictable and controllable QoS differentiation is then conducted. With respect to the loss rate differentiation, the packet shortage phenomenon shown in two classical proportional loss rate (PLR) dropping schemes is studied. On the pursuit of a feasible solution, the potential of compromising the system resource, that is, the buffer, is ruled out; instead, an enhanced debt-aware mechanism is suggested to relieve the negative effects of packet shortage. Simulation results show that debt-aware partially curbs the biased loss rate ratios, and improves the queueing delay performance as well. With respect to the delay differentiation, the dynamic behavior of the average delay difference between successive classes is first analyzed, aiming to gain insights of system dynamics. Then, two classical delay differentiation mechanisms, that is,proportional average delay (PAD) and waiting time priority (WTP), are simulated and discussed. Based on observations on their differentiation performances over both short and long time periods, a combined delay differentiation (CDD) scheme is introduced. Simulations are utilized to validate this method. Both loss and delay differentiations are based on a series of differentiation parameters. Though previous work on the selection of delay differentiation parameters has been presented, that of loss differentiation parameters mostly relied on network operators\u27 experience. A quantitative guideline, based on the principles of queueing and optimization, is then proposed to compute loss differentiation parameters. Aside from analysis, the new approach is substantiated by numerical results

    Quality of Service (QoS) in Enterprise WAN Networks

    Get PDF
    Enterprise IT organizations started to face issues related to managing applications over the slow speed Wide Area Network (WAN) circuits a few years ago with the appearance and use of file-sharing applications over their WANs and/or Internet between headquarters and branch offices. The pain has continued to grow with introduction of mission critical transactional type data along with voice and video traffic over these networks. For this very reason several techniques were developed and implemented over the years by the vendors and service providers to help the Enterprise organization cope with these problems. This field project report provides an overview of Quality of Service (QoS) and its implementation in Enterprise Networks for Engineering Managers. The author will discuss the best practices around developing designs for architectures already in place, as well as the business and technical challenges that are faced by Engineering Managers in enterprise organizations when deploying QoS. While the project focuses on QoS implementation of WAN, similar concepts can be used for any type of implementation throughout the network. The author will first address the issue of bandwidth utilization and how its use has increased in recent years, what type of applications are driving it and the issues enterprise organizations are having in managing it. Next, the various industry standard solutions available to tackle this issue and the advantages of deploying them in the network will be discussed. Recommendations on the use of Project Planning guidelines to implement this critical project within the company and strategic steps that can be used to accomplish the goal will follow. Finally, cost analysis will show that increasing the bandwidth on the WAN can simply add cost to the enterprise organizations in most cases, whereas the proper use of QoS can help the organization reduce cost while utilizing the existing circuits while delivering the same level of service. The author recommends the use of QoS in networks to manage traffic but does not rule out the possibility of increasing bandwidth in the enterprise network or the combination of both

    ACUTA Journal of Telecommunications in Higher Education

    Get PDF
    In This Issue Technology Advances: The View from 10,000 Feet WAP: Are You Ready for a Wireless World? Virtual Private Networks: How They Can Work for Colleges and Universities Network Security: How\u27s Your Posture? Software for Rent: Contact ASP Voicing My IPinion Institutional Excellence Award: Colorado Christian University Columns Interview Book Revie

    A Study on Security Attributes of Software-Defined Wide Area Network

    Get PDF
    For organizations to communicate important data across various branches, a reliable Wide Area Network (WAN) is important. With the increase of several factors such as usage of cloud services, WAN bandwidth demand, cost of leased lines, complexity in building/managing WAN and changing business needs led to need of next generation WAN. Software-defined wide area network (SD- WAN) is an emerging trend in today’s networking world as it simplifies management of network and provides seamless integration with the cloud. Compared to Multiprotocol Label Switching (MPLS) majorly used in traditional WAN architecture, SD-WAN incurs less cost, highly secure and offers great performance. This paper will mainly focus to investigate this next-generation WAN’s security attributes as security plays a crucial role in SD-WAN implementation. The goal of the paper is to analyze SD-WAN security by applying principles of CIA triad principle. Comparison of SD-WAN products offered by three different vendors in SD-WAN market with respect to its security is another important area that will be covered in this paper

    Issues and Challenges for Network Virtualisation

    Get PDF
    In recent years, network virtualisation has been of great interest to researchers, being a relatively new and major paradigm in networking. This has been reflected in the IT industry where many virtualisation solutions are being marketed as revolutionary and purchased by enterprises to exploit these promised performances. Adversely, there are certain drawbacks like security, isolation and others that have conceded the network virtualisation. In this study, an investigation of the different state-of-the-art virtualisation technologies, their issues and challenges are addressed and besides, a guideline for a quintessential Network Virtualisation Environment (NVE) is been proposed. A systematic review was effectuated on selectively picked research papers and technical reports. Moreover a comparative study is performed on different Network Virtualisation technologies which include features like security, isolation, stability, convergence, outlay, scalability, robustness, manageability, resource management, programmability, flexibility, heterogeneity, legacy Support, and ease of deployment. The virtualisation technologies comprise Virtual Private Network (VPN), Virtual Local Area Network (VLAN), Virtual Extensible Local Area Network (VXLAN), Software Defined Networking (SDN) and Network Function Virtualisation (NFV). Conclusively the results exhibited the disparity as to the gaps of creating an ideal network virtualisation model which can be circumvented using these as a benchmark
    • …
    corecore