76 research outputs found

    A Concept for Attribute-Based Authorization on D-Grid Resources

    Get PDF
    In Germany's D-Grid project numerous Grid communities are working together to provide a common overarching Grid infrastructure. The major aims of D-Grid are the integration of existing Grid deployments and their interoperability. The challenge lies in the heterogeneity of the current implementations: three Grid middleware stacks and different Virtual Organization management approaches have to be embraced to achieve the intended goals. In this article we focus oil the implementation of an attribute-based authorization infrastructure that not only leverages the well-known VO attributes but also campus attributes managed by a Shibboleth federation

    GridCertLib: a Single Sign-on Solution for Grid Web Applications and Portals

    Full text link
    This paper describes the design and implementation of GridCertLib, a Java library leveraging a Shibboleth-based authentication infrastructure and the SLCS online certificate signing service, to provide short-lived X.509 certificates and Grid proxies. The main use case envisioned for GridCertLib, is to provide seamless and secure access to Grid/X.509 certificates and proxies in web applications and portals: when a user logs in to the portal using Shibboleth authentication, GridCertLib can automatically obtain a Grid/X.509 certificate from the SLCS service and generate a VOMS proxy from it. We give an overview of the architecture of GridCertLib and briefly describe its programming model. Its application to some deployment scenarios is outlined, as well as a report on practical experience integrating GridCertLib into portals for Bioinformatics and Computational Chemistry applications, based on the popular P-GRADE and Django softwares.Comment: 18 pages, 1 figure; final manuscript accepted for publication by the "Journal of Grid Computing

    Semantic security: specification and enforcement of semantic policies for security-driven collaborations

    Get PDF
    Collaborative research can often have demands on finer-grained security that go beyond the authentication-only paradigm as typified by many e-Infrastructure/Grid based solutions. Supporting finer-grained access control is often essential for domains where the specification and subsequent enforcement of authorization policies is needed. The clinical domain is one area in particular where this is so. However it is the case that existing security authorization solutions are fragile, inflexible and difficult to establish and maintain. As a result they often do not meet the needs of real world collaborations where robustness and flexibility of policy specification and enforcement, and ease of maintenance are essential. In this paper we present results of the JISC funded Advanced Grid Authorisation through Semantic Technologies (AGAST) project (www.nesc.ac.uk/hub/projects/agast) and show how semantic-based approaches to security policy specification and enforcement can address many of the limitations with existing security solutions. These are demonstrated into the clinical trials domain through the MRC funded Virtual Organisations for Trials and Epidemiological Studies (VOTES) project (www.nesc.ac.uk/hub/projects/votes) and the epidemiological domain through the JISC funded SeeGEO project (www.nesc.ac.uk/hub/projects/seegeo)

    Integrating security solutions to support nanoCMOS electronics research

    Get PDF
    The UK Engineering and Physical Sciences Research Council (EPSRC) funded Meeting the Design Challenges of nanoCMOS Electronics (nanoCMOS) is developing a research infrastructure for collaborative electronics research across multiple institutions in the UK with especially strong industrial and commercial involvement. Unlike other domains, the electronics industry is driven by the necessity of protecting the intellectual property of the data, designs and software associated with next generation electronics devices and therefore requires fine-grained security. Similarly, the project also demands seamless access to large scale high performance compute resources for atomic scale device simulations and the capability to manage the hundreds of thousands of files and the metadata associated with these simulations. Within this context, the project has explored a wide range of authentication and authorization infrastructures facilitating compute resource access and providing fine-grained security over numerous distributed file stores and files. We conclude that no single security solution meets the needs of the project. This paper describes the experiences of applying X.509-based certificates and public key infrastructures, VOMS, PERMIS, Kerberos and the Internet2 Shibboleth technologies for nanoCMOS security. We outline how we are integrating these solutions to provide a complete end-end security framework meeting the demands of the nanoCMOS electronics domain

    Shibboleth-based access to and usage of grid resources

    Get PDF
    Security underpins grids and e-research. Without a robust, reliable and simple grid security infrastructure combined with commonly accepted security practices, large portions of the research community and wider industry will not engage. The predominant way in which security is currently addressed in the grid community is through public key infrastructures (PKI) based upon X.509 certificates to support authentication. Whilst PKIs address user identity issues, authentication does not provide fine grained control over what users are allowed to do on remote resources (authorization). In this paper we outline how we have successfully combined Shibboleth and advanced authorization technologies to provide simplified (from the user perspective) but fine grained security for access to and usage of grid resources. We demonstrate this approach through different security focused e-science projects being conducted at the National e-Science Centre (NeSC) at the University of Glasgow. We believe that this model is widely applicable and encourage the further uptake of e-science by non-IT specialists in the research communitie

    GridCertLib: A Single Sign-on Solution for Grid Web Applications and Portals

    Get PDF
    This paper describes the design and implementation of GridCertLib, a Java library leveraging a Shibboleth-based authentication infrastructure and the SLCS online certificate signing service, to provide short-lived X.509 certificates and Grid proxies. The main use case envisioned for GridCertLib, is to provide seamless and secure access to Grid X.509 certificates and proxies in web applications and portals: when a user logs in to the portal using SAML-based Shibboleth authentication, GridCertLib uses the SAML assertion to obtain a Grid X.509 certificate from the SLCS service and generate a VOMS proxy from it. We give an overview of the architecture of GridCertLib and briefly describe its programming model. Its application to some deployment scenarios is outlined, as well as a report on practical experience integrating GridCertLib into portals for Bioinformatics and Computational Chemistry applications, based on the popular P-GRADE and Django software

    Supporting UK-wide e-clinical trials and studies

    Get PDF
    As clinical trials and epidemiological studies become increasingly large, covering wider (national) geographical areas and involving ever broader populations, the need to provide an information management infrastructure that can support such endeavours is essential. A wealth of clinical data now exists at varying levels of care (primary care, secondary care, etc.). Simple, secure access to such data would greatly benefit the key processes involved in clinical trials and epidemiological studies: patient recruitment, data collection and study management. The Grid paradigm provides one model for seamless access to such data and support of these processes. The VOTES project (Virtual Organisations for Trials and Epidemiological Studies) is a collaboration between several UK institutions to implement a generic framework that effectively leverages the available health-care information across the UK to support more efficient gathering and processing of trial information. The structure of the information available in the health-care domain in the UK itself varies broadly in-line with the national boundaries of the constituent states (England, Scotland, Wales and Northern Ireland). Technologies must address these political boundaries and the impact these boundaries have in terms of for example, information governance, policies, and of course large-scale heterogeneous distribution of the data sets themselves. This paper outlines the methodology in implementing the framework between three specific data sources that serve as useful case studies: Scottish data from the Scottish Care Information (SCI) Store data repository, data on the General Practice Research Database (GPRD) diabetes trial at Imperial College London, and benign prostate hypoplasia (BPH) data from the University of Nottingham. The design, implementation and wider research issues are discussed along with the technological challenges encountered in the project in the application of Grid technologies

    Federated authentication and authorisation for e-science

    Get PDF
    The Grid and Web service community are defining a range of standards for a complete solution for security. The National e-Science Centre (NeSC) at the University of Glasgow is investigating how the various pre-integration components work together in a variety of e-Science projects. The EPSRC-funded nanoCMOS project aims to allow electronics designers and manufacturers to use e-Science technologies and expertise to solve problems of device variability and its impact on system design. To support the security requirements of nanoCMOS, two NeSC projects (VPMan and OMII-SP) are providing tools to allow easy configuration of security infrastructures, exploiting previous successful projects using Shibboleth and PERMIS. This paper presents the model in which these tools interoperate to provide secure and simple access to Grid resources for non-technical users

    Grid infrastructures for the electronics domain: requirements and early prototypes from an EPSRC pilot project

    Get PDF
    The fundamental challenges facing future electronics design is to address the decreasing ā€“ atomistic - scale of transistor devices and to understand and predict the impact and statistical variability these have on design of circuits and systems. The EPSRC pilot project ā€œMeeting the Design Challenges of nanoCMOS Electronicsā€ (nanoCMOS) which began in October 2006 has been funded to explore this space. This paper outlines the key requirements that need to be addressed for Grid technology to support the various research strands in this domain, and shows early prototypes demonstrating how these requirements are being addressed
    • ā€¦
    corecore