54,001 research outputs found

    Castell: a heterogeneous cmp architecture scalable to hundreds of processors

    Get PDF
    Technology improvements and power constrains have taken multicore architectures to dominate microprocessor designs over uniprocessors. At the same time, accelerator based architectures have shown that heterogeneous multicores are very efficient and can provide high throughput for parallel applications, but with a high-programming effort. We propose Castell a scalable chip multiprocessor architecture that can be programmed as uniprocessors, and provides the high throughput of accelerator-based architectures. Castell relies on task-based programming models that simplify software development. These models use a runtime system that dynamically finds, schedules, and adds hardware-specific features to parallel tasks. One of these features is DMA transfers to overlap computation and data movement, which is known as double buffering. This feature allows applications on Castell to tolerate large memory latencies and lets us design the memory system focusing on memory bandwidth. In addition to provide programmability and the design of the memory system, we have used a hierarchical NoC and added a synchronization module. The NoC design distributes memory traffic efficiently to allow the architecture to scale. The synchronization module is a consequence of the large performance degradation of application for large synchronization latencies. Castell is mainly an architecture framework that enables the definition of domain-specific implementations, fine-tuned to a particular problem or application. So far, Castell has been successfully used to propose heterogeneous multicore architectures for scientific kernels, video decoding (using H.264), and protein sequence alignment (using Smith-Waterman and clustalW). It has also been used to explore a number of architecture optimizations such as enhanced DMA controllers, and architecture support for task-based programming models. ii

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the first six months. The project aim is to scale the Erlang’s radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the effectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the rst six months. The project aim is to scale the Erlang's radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the e ectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    NFV Based Gateways for Virtualized Wireless Sensors Networks: A Case Study

    Full text link
    Virtualization enables the sharing of a same wireless sensor network (WSN) by multiple applications. However, in heterogeneous environments, virtualized wireless sensor networks (VWSN) raises new challenges such as the need for on-the-fly, dynamic, elastic and scalable provisioning of gateways. Network Functions Virtualization (NFV) is an emerging paradigm that can certainly aid in tackling these new challenges. It leverages standard virtualization technology to consolidate special-purpose network elements on top of commodity hardware. This article presents a case study on NFV based gateways for VWSNs. In the study, a VWSN gateway provider, operates and manages an NFV based infrastructure. We use two different brands of wireless sensors. The NFV infrastructure makes possible the dynamic, elastic and scalable deployment of gateway modules in this heterogeneous VWSN environment. The prototype built with Openstack as platform is described

    ClouNS - A Cloud-native Application Reference Model for Enterprise Architects

    Full text link
    The capability to operate cloud-native applications can generate enormous business growth and value. But enterprise architects should be aware that cloud-native applications are vulnerable to vendor lock-in. We investigated cloud-native application design principles, public cloud service providers, and industrial cloud standards. All results indicate that most cloud service categories seem to foster vendor lock-in situations which might be especially problematic for enterprise architectures. This might sound disillusioning at first. However, we present a reference model for cloud-native applications that relies only on a small subset of well standardized IaaS services. The reference model can be used for codifying cloud technologies. It can guide technology identification, classification, adoption, research and development processes for cloud-native application and for vendor lock-in aware enterprise architecture engineering methodologies

    Enabling architectures for QoS provisioning

    Get PDF
    Nowadays, new multimedia services have been deployed with stringent requirements for Quality of Service (QoS). The QoS provisioning is faced with the heterogeneity of system components. This thesis presents two research: on architectures for QoS management at the application layer, fulfilled mainly by software components; and on distributed software architectures for routing devices providing desired QoS at the underlying communication layer. At the application layer, the QoS architecture we propose, based on the Quality Driven Delivery (QDD) framework, deals with the increasing amount of QoS information of a distributed system. Based on various QoS information models we define for key actors of a distributed system, a QoS information base is generated using QoS information collecting and analysis tools. To translate QoS information among different components, we propose mechanisms to build QoS mapping rules from statistical data. Experiments demonstrate that efficient QoS decisions can be made effectively regarding the contribution of all system components with the help of the QoS information management system. At the underlying layer, we investigate distributed and scalable software architectures for QoS-enabled devices. Due to the huge volume of traffic to be switched, the traditional software model used for current generation routers, where the control card of the router performs all the processing tasks, is no longer appropriate in the near future. We propose a new scalable and distributed architecture to fully exploit the hardware platforms of the next generation routers, and to improve the quality of routers, particularly with respect to scalability and to a lesser extent to resiliency and availability. Our proposal is a distributed software framework where control tasks are shared among the control and line cards of the router. Specific architectures for routing, signaling protocols and routing table management are developed. We investigate the challenges for such distributed architectures and proposed various solutions to overcome them. Based on a general distributed software framework, an efficient scalable distributed architecture for MPLS/LDP and different scalable distributed schemes for the routing table manager (RTM) are developed. We also evaluate the performance of proposed distributed schemes and discuss where to deploy these architectures depending on the type of routers (i.e., their hardware capacity
    • …
    corecore