2,893 research outputs found

    Power series approximations for two-class generalized processor sharing systems

    Get PDF
    We develop power series approximations for a discrete-time queueing system with two parallel queues and one processor. If both queues are nonempty, a customer of queue 1 is served with probability beta, and a customer of queue 2 is served with probability 1-beta. If one of the queues is empty, a customer of the other queue is served with probability 1. We first describe the generating function U(z (1),z (2)) of the stationary queue lengths in terms of a functional equation, and show how to solve this using the theory of boundary value problems. Then, we propose to use the same functional equation to obtain a power series for U(z (1),z (2)) in beta. The first coefficient of this power series corresponds to the priority case beta=0, which allows for an explicit solution. All higher coefficients are expressed in terms of the priority case. Accurate approximations for the mean stationary queue lengths are obtained from combining truncated power series and Pad, approximation

    The effective bandwidth problem revisited

    Full text link
    The paper studies a single-server queueing system with autonomous service and â„“\ell priority classes. Arrival and departure processes are governed by marked point processes. There are â„“\ell buffers corresponding to priority classes, and upon arrival a unit of the kkth priority class occupies a place in the kkth buffer. Let N(k)N^{(k)}, k=1,2,...,â„“k=1,2,...,\ell denote the quota for the total kkth buffer content. The values N(k)N^{(k)} are assumed to be large, and queueing systems both with finite and infinite buffers are studied. In the case of a system with finite buffers, the values N(k)N^{(k)} characterize buffer capacities. The paper discusses a circle of problems related to optimization of performance measures associated with overflowing the quota of buffer contents in particular buffers models. Our approach to this problem is new, and the presentation of our results is simple and clear for real applications.Comment: 29 pages, 11pt, Final version, that will be published as is in Stochastic Model

    Critically loaded multi-server queues with abandonments, retrials, and time-varying parameters

    Full text link
    In this paper, we consider modeling time-dependent multi-server queues that include abandonments and retrials. For the performance analysis of those, fluid and diffusion models called "strong approximations" have been widely used in the literature. Although they are proven to be asymptotically exact, their effectiveness as approximations in critically loaded regimes needs to be investigated. To that end, we find that existing fluid and diffusion approximations might be either inaccurate under simplifying assumptions or computationally intractable. To address that concern, this paper focuses on developing a methodology by adjusting the fluid and diffusion models so that they significantly improve the estimation accuracy. We illustrate the accuracy of our adjusted models by performing a number of numerical experiments

    Two extensions of Kingman's GI/G/1 bound

    Get PDF
    A simple bound in GI/G/1 queues was obtained by Kingman using a discrete martingale transform. We extend this technique to 1) multiclass ΣGI/G/1\Sigma\textrm{GI/G/1} queues and 2) Markov Additive Processes (MAPs) whose background processes can be time-inhomogeneous or have an uncountable state-space. Both extensions are facilitated by a necessary and sufficient ordinary differential equation (ODE) condition for MAPs to admit continuous martingale transforms. Simulations show that the bounds on waiting time distributions are almost exact in heavy-traffic, including the cases of 1) heterogeneous input, e.g., mixing Weibull and Erlang-k classes and 2) Generalized Markovian Arrival Processes, a new class extending the Batch Markovian Arrival Processes to continuous batch sizes
    • …
    corecore