177 research outputs found

    Infinitary λ\lambda-Calculi from a Linear Perspective (Long Version)

    Get PDF
    We introduce a linear infinitary λ\lambda-calculus, called ℓΛ∞\ell\Lambda_{\infty}, in which two exponential modalities are available, the first one being the usual, finitary one, the other being the only construct interpreted coinductively. The obtained calculus embeds the infinitary applicative λ\lambda-calculus and is universal for computations over infinite strings. What is particularly interesting about ℓΛ∞\ell\Lambda_{\infty}, is that the refinement induced by linear logic allows to restrict both modalities so as to get calculi which are terminating inductively and productive coinductively. We exemplify this idea by analysing a fragment of ℓΛ\ell\Lambda built around the principles of SLL\mathsf{SLL} and 4LL\mathsf{4LL}. Interestingly, it enjoys confluence, contrarily to what happens in ordinary infinitary λ\lambda-calculi

    Strict Ideal Completions of the Lambda Calculus

    Get PDF
    The infinitary lambda calculi pioneered by Kennaway et al. extend the basic lambda calculus by metric completion to infinite terms and reductions. Depending on the chosen metric, the resulting infinitary calculi exhibit different notions of strictness. To obtain infinitary normalisation and infinitary confluence properties for these calculi, Kennaway et al. extend β\beta-reduction with infinitely many `⊥\bot-rules', which contract meaningless terms directly to ⊥\bot. Three of the resulting B\"ohm reduction calculi have unique infinitary normal forms corresponding to B\"ohm-like trees. In this paper we develop a corresponding theory of infinitary lambda calculi based on ideal completion instead of metric completion. We show that each of our calculi conservatively extends the corresponding metric-based calculus. Three of our calculi are infinitarily normalising and confluent; their unique infinitary normal forms are exactly the B\"ohm-like trees of the corresponding metric-based calculi. Our calculi dispense with the infinitely many ⊥\bot-rules of the metric-based calculi. The fully non-strict calculus (called 111111) consists of only β\beta-reduction, while the other two calculi (called 001001 and 101101) require two additional rules that precisely state their strictness properties: λx.⊥→⊥\lambda x.\bot \to \bot (for 001001) and ⊥ M→⊥\bot\,M \to \bot (for 001001 and 101101)

    Lambda Calculus with Explicit Recursion

    Get PDF
    AbstractThis paper is concerned with the study ofλ-calculus with explicit recursion, namely of cyclicλ-graphs. The starting point is to treat aλ-graph as a system of recursion equations involvingλ-terms and to manipulate such systems in an unrestricted manner, using equational logic, just as is possible for first-order term rewriting. Surprisingly, now the confluence property breaks down in an essential way. Confluence can be restored by introducing a restraining mechanism on the substitution operation. This leads to a family ofλ-graph calculi, which can be seen as an extension of the family ofλσ-calculi (λ-calculi with explicit substitution). While theλσ-calculi treat the let-construct as a first-class citizen, our calculi support the letrec, a feature that is essential to reason about time and space behavior of functional languages and also about compilation and optimizations of program

    Sequence Types for Hereditary Permutators

    Get PDF
    The invertible terms in Scott\u27s model D_infty are known as the hereditary permutators. Equivalently, they are terms which are invertible up to beta eta-conversion with respect to the composition of the lambda-terms. Finding a type-theoretic characterization to the set of hereditary permutators was problem # 20 of TLCA list of problems. In 2008, Tatsuta proved that this was not possible with an inductive type system. Building on previous work, we use an infinitary intersection type system based on sequences (i.e., families of types indexed by integers) to characterize hereditary permutators with a unique type. This gives a positive answer to the problem in the coinductive case

    Relational Graph Models at Work

    Full text link
    We study the relational graph models that constitute a natural subclass of relational models of lambda-calculus. We prove that among the lambda-theories induced by such models there exists a minimal one, and that the corresponding relational graph model is very natural and easy to construct. We then study relational graph models that are fully abstract, in the sense that they capture some observational equivalence between lambda-terms. We focus on the two main observational equivalences in the lambda-calculus, the theory H+ generated by taking as observables the beta-normal forms, and H* generated by considering as observables the head normal forms. On the one hand we introduce a notion of lambda-K\"onig model and prove that a relational graph model is fully abstract for H+ if and only if it is extensional and lambda-K\"onig. On the other hand we show that the dual notion of hyperimmune model, together with extensionality, captures the full abstraction for H*

    Simulation in the Call-by-Need Lambda-Calculus with Letrec, Case, Constructors, and Seq

    Full text link
    This paper shows equivalence of several versions of applicative similarity and contextual approximation, and hence also of applicative bisimilarity and contextual equivalence, in LR, the deterministic call-by-need lambda calculus with letrec extended by data constructors, case-expressions and Haskell's seq-operator. LR models an untyped version of the core language of Haskell. The use of bisimilarities simplifies equivalence proofs in calculi and opens a way for more convenient correctness proofs for program transformations. The proof is by a fully abstract and surjective transfer into a call-by-name calculus, which is an extension of Abramsky's lazy lambda calculus. In the latter calculus equivalence of our similarities and contextual approximation can be shown by Howe's method. Similarity is transferred back to LR on the basis of an inductively defined similarity. The translation from the call-by-need letrec calculus into the extended call-by-name lambda calculus is the composition of two translations. The first translation replaces the call-by-need strategy by a call-by-name strategy and its correctness is shown by exploiting infinite trees which emerge by unfolding the letrec expressions. The second translation encodes letrec-expressions by using multi-fixpoint combinators and its correctness is shown syntactically by comparing reductions of both calculi. A further result of this paper is an isomorphism between the mentioned calculi, which is also an identity on letrec-free expressions.Comment: 50 pages, 11 figure

    Taylor expansion for Call-By-Push-Value

    Get PDF
    The connection between the Call-By-Push-Value lambda-calculus introduced by Levy and Linear Logic introduced by Girard has been widely explored through a denotational view reflecting the precise ruling of resources in this language. We take a further step in this direction and apply Taylor expansion introduced by Ehrhard and Regnier. We define a resource lambda-calculus in whose terms can be used to approximate terms of Call-By-Push-Value. We show that this approximation is coherent with reduction and with the translations of Call-By-Name and Call-By-Value strategies into Call-By-Push-Value

    A Functorial Bridge between the Infinitary Affine Lambda-Calculus and Linear Logic

    No full text
    International audienceIt is a well known intuition that the exponential modality of linear logic may be seen as a form of limit. Recently,Mellì es, Tabareau and Tasson gave a categorical account for this intuition, whereas the first author provided a topological account, based on an infinitary syntax. We relate these two different views by giving a categorical version of the topological construction, yielding two benefits: on the one hand, we obtain canonical models of the infinitary affine lambda-calculus introduced by the first author; on the other hand, we find an alternative formula for computing free commutative comonoids in models of linear logic with respect to the one presented byMellì es et al

    Intensional and Extensional Semantics of Bounded and Unbounded Nondeterminism

    Get PDF
    We give extensional and intensional characterizations of nondeterministic functional programs: as structure preserving functions between biorders, and as nondeterministic sequential algorithms on ordered concrete data structures which compute them. A fundamental result establishes that the extensional and intensional representations of non-deterministic programs are equivalent, by showing how to construct a unique sequential algorithm which computes a given monotone and stable function, and describing the conditions on sequential algorithms which correspond to continuity with respect to each order. We illustrate by defining may and must-testing denotational semantics for a sequential functional language with bounded and unbounded choice operators. We prove that these are computationally adequate, despite the non-continuity of the must-testing semantics of unbounded nondeterminism. In the bounded case, we prove that our continuous models are fully abstract with respect to may and must-testing by identifying a simple universal type, which may also form the basis for models of the untyped lambda-calculus. In the unbounded case we observe that our model contains computable functions which are not denoted by terms, by identifying a further "weak continuity" property of the definable elements, and use this to establish that it is not fully abstract
    • …
    corecore