2,124 research outputs found

    Shortest Path versus Multi-Hub Routing in Networks with Uncertain Demand

    Full text link
    We study a class of robust network design problems motivated by the need to scale core networks to meet increasingly dynamic capacity demands. Past work has focused on designing the network to support all hose matrices (all matrices not exceeding marginal bounds at the nodes). This model may be too conservative if additional information on traffic patterns is available. Another extreme is the fixed demand model, where one designs the network to support peak point-to-point demands. We introduce a capped hose model to explore a broader range of traffic matrices which includes the above two as special cases. It is known that optimal designs for the hose model are always determined by single-hub routing, and for the fixed- demand model are based on shortest-path routing. We shed light on the wider space of capped hose matrices in order to see which traffic models are more shortest path-like as opposed to hub-like. To address the space in between, we use hierarchical multi-hub routing templates, a generalization of hub and tree routing. In particular, we show that by adding peak capacities into the hose model, the single-hub tree-routing template is no longer cost-effective. This initiates the study of a class of robust network design (RND) problems restricted to these templates. Our empirical analysis is based on a heuristic for this new hierarchical RND problem. We also propose that it is possible to define a routing indicator that accounts for the strengths of the marginals and peak demands and use this information to choose the appropriate routing template. We benchmark our approach against other well-known routing templates, using representative carrier networks and a variety of different capped hose traffic demands, parameterized by the relative importance of their marginals as opposed to their point-to-point peak demands

    A note on hierarchical hubbing for a generalization of the VPN problem

    Full text link
    Robust network design refers to a class of optimization problems that occur when designing networks to efficiently handle variable demands. The notion of "hierarchical hubbing" was introduced (in the narrow context of a specific robust network design question), by Olver and Shepherd [2010]. Hierarchical hubbing allows for routings with a multiplicity of "hubs" which are connected to the terminals and to each other in a treelike fashion. Recently, Fr\'echette et al. [2013] explored this notion much more generally, focusing on its applicability to an extension of the well-studied hose model that allows for upper bounds on individual point-to-point demands. In this paper, we consider hierarchical hubbing in the context of a previously studied (and extremely natural) generalization of the hose model, and prove that the optimal hierarchical hubbing solution can be found efficiently. This result is relevant to a recently proposed generalization of the "VPN Conjecture".Comment: 14 pages, 1 figur

    Travelling on Graphs with Small Highway Dimension

    Get PDF
    We study the Travelling Salesperson (TSP) and the Steiner Tree problem (STP) in graphs of low highway dimension. This graph parameter was introduced by Abraham et al. [SODA 2010] as a model for transportation networks, on which TSP and STP naturally occur for various applications in logistics. It was previously shown [Feldmann et al. ICALP 2015] that these problems admit a quasi-polynomial time approximation scheme (QPTAS) on graphs of constant highway dimension. We demonstrate that a significant improvement is possible in the special case when the highway dimension is 1, for which we present a fully-polynomial time approximation scheme (FPTAS). We also prove that STP is weakly NP-hard for these restricted graphs. For TSP we show NP-hardness for graphs of highway dimension 6, which answers an open problem posed in [Feldmann et al. ICALP 2015]

    On distributed virtual network embedding with guarantees

    Full text link
    To provide wide-area network services, resources from different infrastructure providers are needed. Leveraging the consensus-based resource allocation literature, we propose a general distributed auction mechanism for the (NP-hard) virtual network (VNET) embedding problem. Under reasonable assumptions on the bidding scheme, the proposed mechanism is proven to converge, and it is shown that the solutions guarantee a worst-case efficiency of (1-(1/e)) relative to the optimal node embedding, or VNET embedding if virtual links are mapped to exactly one physical link. This bound is optimal, that is, no better polynomial-time approximation algorithm exists, unless P=NP. Using extensive simulations, we confirm superior convergence properties and resource utilization when compared to existing distributed VNET embedding solutions, and we show how by appropriate policy design, our mechanism can be instantiated to accommodate the embedding goals of different service and infrastructure providers, resulting in an attractive and flexible resource allocation solution.CNS-0963974 - National Science Foundationhttp://www.cs.bu.edu/fac/matta/Papers/ToN-CAD.pdfAccepted manuscrip

    On distributed virtual network embedding with guarantees

    Full text link
    To provide wide-area network services, resources from different infrastructure providers are needed. Leveraging the consensus-based resource allocation literature, we propose a general distributed auction mechanism for the (NP-hard) virtual network (VNET) embedding problem. Under reasonable assumptions on the bidding scheme, the proposed mechanism is proven to converge, and it is shown that the solutions guarantee a worst case efficiency of (?????) relative to the optimal solution, and that this bound is optimal, that is, no better approximation exists. Using extensive simulations, we confirm superior convergence properties and resource utilization when compared with existing distributed VNET embedding solutions, and we show how byappropriate policy design, our mechanism can be instantiated to accommodate the embedding goals of different service and infrastructure providers, resulting in an attractive and flexible resource allocation solution.This work is supported in part by the National Science Foundation under grant CNS-0963974

    On distributed virtual network embedding with guarantees

    Full text link
    To provide wide-area network services, resources from different infrastructure providers are needed. Leveraging the consensus-based resource allocation literature, we propose a general distributed auction mechanism for the (NP-hard) virtual network (VNET) embedding problem. Under reasonable assumptions on the bidding scheme, the proposed mechanism is proven to converge, and it is shown that the solutions guarantee a worst case efficiency of (?????) relative to the optimal solution, and that this bound is optimal, that is, no better approximation exists. Using extensive simulations, we confirm superior convergence properties and resource utilization when compared with existing distributed VNET embedding solutions, and we show how byappropriate policy design, our mechanism can be instantiated to accommodate the embedding goals of different service and infrastructure providers, resulting in an attractive and flexible resource allocation solution.This work is supported in part by the National Science Foundation under grant CNS-0963974

    Routing with Reloads

    Get PDF
    We examine routing problems with reloads, how they can be modeled, their properties and how they can be solved. We propose a simple model, the Pickup and Delivery Problem with Reloads (RPDP), that captures the process of reloading and can be extended for real world applications. We present results that show that the RPDP is solvable in polynomial time if the number of requests is bounded by a constant. Additionally, we examine a special case of the RPDP, the k-Star Hub Problem. This problem is solvable efficiently by network flow approaches if no more than two hubs are available. Otherwise, it is NP-complete. In the second part of this thesis, additional constraints are incorporated into the model and a tabu search heuristic for this problem is presented. The heuristic has been implemented and tested on several benchmarking instances, both artificial and a real-world application. In the appendix, we discuss the application of column generation for a reload problem

    Path Planning for Cooperative Routing of Air-Ground Vehicles

    Full text link
    We consider a cooperative vehicle routing problem for surveillance and reconnaissance missions with communication constraints between the vehicles. We propose a framework which involves a ground vehicle and an aerial vehicle; the vehicles travel cooperatively satisfying the communication limits, and visit a set of targets. We present a mixed integer linear programming (MILP) formulation and develop a branch-and-cut algorithm to solve the path planning problem for the ground and air vehicles. The effectiveness of the proposed approach is corroborated through extensive computational experiments on several randomly generated instances
    corecore