1,697 research outputs found

    A GPU-based Implementation for Improved Online Rebinning Performance in Clinical 3-D PET

    Get PDF
    Online rebinning is an important and well-established technique for reducing the time required to process Positron Emission Tomography data. However, the need for efficient data processing in a clinical setting is growing rapidly and is beginning to exceed the capability of traditional online processing methods. High-count rate applications such as Rubidium 3-D PET studies can easily saturate current online rebinning technology. Realtime processing at these high-count rates is essential to avoid significant data loss. In addition, the emergence of time-of-flight (TOF) scanners is producing very large data sets for processing. TOF applications require efficient online Rebinning methods so as to maintain high patient throughput. Currently, new hardware architectures such as Graphics Processing Units (GPUs) are available to speedup data parallel and number crunching algorithms. In comparison to the usual parallel systems, such as multiprocessor or clustered machines, GPU hardware can be much faster and above all, it is significantly cheaper. The GPUs have been primarily delivered for graphics for video games but are now being used for High Performance computing across many domains. The goal of this thesis is to investigate the suitability of the GPU for PET rebinning algorithms

    Elastic systems

    Get PDF
    Elastic systems provide tolerance to the variations in computation and communication delays. The incorporation of elasticity opens new opportunities for optimization using new correct-by-construction transformations that cannot be applied to rigid non-elastic systems. The basics of synchronous and asynchronous elastic systems will be reviewed. A set of behavior-preserving transformations will be presented: retiming, recycling, early evaluation, variable-latency units and speculative execution. The application of these transformations for performance and power optimization will be discussed. Finally, a novel framework for microarchitectural exploration will be introduced, showing that the optimal pipelining of a circuit can be automatically obtained by using the previous transformations.Peer ReviewedPostprint (published version

    Increasing rendering performance of graphics hardware

    Get PDF
    Graphics Processing Unit (GPU) performance is increasing faster than central processing unit (CPU) performance. This growth is driven by performance improvements that can be divided into the following three categories: algorithmic improvements, architectural improvements, and circuit-level improvements. In this dissertation I present techniques that improve the rendering performance of graphics hardware measured in speed, power consumption or image quality in each of these three areas. At the algorithmic level, I introduce a method for using graphics hardware to rapidly and efficiently generate summed-area tables, which are data structures that hold pre-computed two-dimensional integrals of subsets of a given image, and present several novel rendering techniques that take advantage of summed-area tables to produce dynamic, high-quality images at interactive frame rates. These techniques improve the visual quality of images rendered on current commodity GPUs without requiring modifications to the underlying hardware or architecture. At the architectural level, I propose modifications to the architecture of current GPUs that add conditional streaming capabilities. I describe a novel GPU-based ray-tracing algorithm that takes advantage of conditional output streams to reduce the memory bandwidth requirements by over an order of magnitude times when compared to previous techniques. At the circuit level, I propose a compute-on-demand paradigm for the design of high-speed and energy-efficient graphics components. The goal of the compute-on-demand paradigm is to only perform computation at the bit-level when needed. The compute-on-demand paradigm exploits the data-dependent nature of computation, and thereby obtains speed and energy improvements by optimizing designs for the common case. This approach is illustrated with the design of a high-speed Z-comparator that is implemented using asynchronous logic. Asynchronous or "clockless" circuits were chosen for my implementations since they allow for data-dependent completion times and reduced power consumption by disabling inactive components. The resulting circuit-level implementation runs over 1.5 times faster while on dissipating 25% the energy of a comparable synchronous comparator for the average case. Also at the circuit-level, I introduce a novel implementation of counterflow pipelining, which allows two streams of data to flow in opposite directions within the same pipeline without the need for complex arbitration. The advantages of this implementation are demonstrated by the design of a high-speed asynchronous Booth multiplier. While both the comparator and the multiplier are useful components of a graphics pipeline, the objective of this work was to propose the new design paradigm as a promising alternative to current graphics hardware design practices

    A parallel progressive radiosity algorithm based on patch data circulation

    Get PDF
    Cataloged from PDF version of article.Current research on radiosity has concentrated on increasing the accuracy and the speed of the solution. Although algorithmic and meshing techniques decrease the execution time, still excessive computational power is required for complex scenes. Hence, parallelism can be exploited for speeding up the method further. This paper aims at providing a thorough examination of parallelism in the basic progressive refinement radiosity, and investigates its parallelization on distributed-memory parallel architectures. A synchronous scheme, based on static task assignment, is proposed to achieve better coherence for shooting patch selections. An efficient global circulation scheme is proposed for the parallel light distribution computations, which reduces the total volume of concurrent communication by an asymptotical factor. The proposed parallel algorithm is implemented on an Intel's iPSC/2 hypercube multicomputer. Load balance qualities of the proposed static assignment schemes are evaluated experimentally. The effect of coherence in the parallel light distribution computations on the shooting patch selection sequence is also investigated. Theoretical and experimental evaluation is also presented to verify that the proposed parallelization scheme yields equally good performance on multicomputers implementing the simplest (e.g. ring) as well as the richest (e.g. hypercube) interconnection topologies. This paper also proposes and presents a parallel load re-balancing scheme which enhances our basic parallel radiosity algorithm to be usable in the parallelization of radiosity methods adopting adaptive subdivision and meshing techniques. (C) 1996 Elsevier Science Lt

    Solution of partial differential equations on vector and parallel computers

    Get PDF
    The present status of numerical methods for partial differential equations on vector and parallel computers was reviewed. The relevant aspects of these computers are discussed and a brief review of their development is included, with particular attention paid to those characteristics that influence algorithm selection. Both direct and iterative methods are given for elliptic equations as well as explicit and implicit methods for initial boundary value problems. The intent is to point out attractive methods as well as areas where this class of computer architecture cannot be fully utilized because of either hardware restrictions or the lack of adequate algorithms. Application areas utilizing these computers are briefly discussed

    Experiments with parallel algorithms for combinatorial problems

    Get PDF
    In the last decade many models for parallel computation have been proposed and many parallel algorithms have been developed. However, few of these models have been realized and most of these algorithms are supposed to run on idealized, unrealistic parallel machines. The parallel machines constructed so far all use a simple model of parallel computation. Therefore, not every existing parallel machine is equally well suited for each type of algorithm. The adaptation of a certain algorithm to a specific parallel archi- tecture may severely increase the complexity of the algorithm or severely obscure its essence. Little is known about the performance of some standard combinatorial algorithms on existing parallel machines. In this paper we present computational results concerning the solution of knapsack, shortest paths and change-making problems by branch and bound, dynamic programming, and divide and conquer algorithms on the ICL-DAP (an SIMD computer), the Manchester dataflow machine and the CDC-CYBER-205 (a pipeline computer)

    Optimizing Throughput and Energy via Fine-Grain Dynamic Voltage Scaling in Elastic Dataflow Systems

    Get PDF
    We propose an approach to jointly optimize throughput and energy consumption in elastic dataflow hardware systems that adapts to changing environmental demands. This is achieved through a novel approach to fine-grain voltage scaling. The system’s processing stages are divided into separate voltage domains with independent and dynamic voltage regulation. We detect local starvation and congestion from local system state measurements to estimate the relationship between local and global throughput and adjust each domains’ voltage to the minimum required by the most restrictive throughput limit. These limits arise from the system’s environments, internal domains that reach their voltage regulators’ limits, and net limits imposed by structures’ latency and throughput requirements. The presence and values of these limits are determined dynamically at runtime without static analysis. The supported dataflows are sequential in FIFOs, parallel in both fork-join and split-merge pairs, and iterative through rings and can be used alone, sequentially, and nested.Master of Scienc

    NONLINEAR OPERATORS FOR IMAGE PROCESSING: DESIGN, IMPLEMENTATION AND MODELING TECHNIQUES FOR POWER ESTIMATION

    Get PDF
    1998/1999Negli ultimi anni passati le applicazioni multimediali hanno visto uno sviluppo notevole, trovando applicazione in un gran numero di campi. Applicazioni come video conferenze, diagnostica medica, telefonia mobile e applicazioni militari necessitano il trattamento di una gran mole di dati ad alta velocità. Pertanto, l'elaborazione di immagini e di dati vocali è molto importante ed è stata oggetto di numerosi sforzi, nel tentativo di trovare algoritmi sempre più veloci ed efficaci. Tra gli algoritmi proposti, noi crediamo che gli operatori razionali svolgano un ruolo molto importante, grazie alla loro versatilità ed efficacia nell'elaborazione di dati. Negli ultimi anni sono stati proposti diversi algoritmi, dimostrando che questi operatori possono essere molto vantaggiosi in diverse applicazioni, producendo buoni risultati. Lo scopo di questo lavoro è di realizzare alcuni di questi algoritmi e, quindi, dimostrare che i filtri razionali, in particolare, possono essere realizzati senza ricorrere a sistemi di grandi dimensioni e possono raggiungere frequenze operative molto alte. Una volta che il blocco fondamentale di un sistema basato su operatori razionali sia stato realizzato, esso pu6 essere riusato con successo in molte altre applicazioni. Dal punto di vista del progettista, è importante avere uno schema generale di studio, che lo renda capace di studiare le varie configurazioni del sistema da realizzare e di analizzare i compromessi tra le variabili di progetto. In particolare, per soddisfare l'esigenza di metodi versatili per la stima della potenza, abbiamo sviluppato una tecnica di macro modellizazione che permette al progettista di stimare velocemente ed accuratamente la potenza dissipata da un circuito. La tesi è organizzata come segue: Nel Capitolo 1 alcuni sono presentati alcuni algoritmi studiati per la realizzazione. Ne viene data solo una veloce descrizione, lasciando comunque al lettore interessato dei riferimenti bibliografici. Nel Capitolo 2 vengono discusse le architetture fondamentali usate per la realizzazione. Principalmente sono state usate architetture a pipeline, ma viene data anche una descrizione degli approcci oggigiorno disponibili per l'ottimizzazione delle temporizzazioni. Nel Capitolo 3 sono presentate le realizzazioni di due sistemi studiati per questa tesi. Gli approcci seguiti si basano su ASIC e FPGA. Richiedono tecniche e soluzioni diverse per il progetto del sistema, per cui é interessante vedere cosa pu6 essere fatto nei due casi. Infine, nel Capitolo 4, descriviamo la nostra tecnica di macro modellizazione per la stima di potenza, dando una breve visione delle tecniche finora proposte e facendo vedere quali sono i vantaggi che il nostro metodo comporta per il progetto.In the past few years, multimedia application have been growing very fast, being applied to a large variety of fields. Applications like video conference, medical diagnostic, mobile phones, military applications require to handle large amount of data at high rate. Images as well as voice data processing are therefore very important and they have been subjected to a lot of efforts in order to find always faster and effective algorithms. Among image processing algorithms, we believe that rational operators assume an important role, due to their versatility and effectiveness in data processing. In the last years, several algorithms have been proposed, demonstrating that these operators can be very suitable in different applications with very good results. The aim of this work is to implement some of these algorithm and, therefore, demonstrate that rational filters, in particular, can be implemented without requiring large sized systems and they can operate at very high frequencies. Once the basic building block of a rational based system has been implemented, it can be successfully reused in many other applications. From the designer point of view, it is important to have a general framework, which makes it able to study various configurations of the system to be implemented and analyse the trade-off among the design variables. In particular, to meet the need far versatile tools far power estimation, we developed a new macro modelling technique, which allows the designer to estimate the power dissipated by a circuit quickly and accurately. The thesis is organized as follows: In chapter 1 we present some of the algorithms which have been studied for implementation. Only a brief overview is given, leaving to the interested reader some references in literature. In chapter 2 we discuss the basic architectures used for the implementations. Pipelined structures have been mainly used for this thesis, but an overview of the nowaday available approaches for timing optimization is presented. In chapter 3 we present two of the implementation designed for this thesis. The approaches followed are ASIC driven and FPGA drive. They require different techniques and different solution for the design of the system, therefore it is interesting to see what can be done in both the cases. Finally, in chapter 4, we describe our macro modelling techniques for power estimation, giving a brief overview of the up to now proposed techniques and showing the advantages our method brings to the design.XII Ciclo1969Versione digitalizzata della tesi di dottorato cartacea
    • …
    corecore