37,788 research outputs found

    ISML: an interface specification meta-language

    Get PDF
    In this paper we present an abstract metaphor model situated within a model-based user interface framework. The inclusion of metaphors in graphical user interfaces is a well established, but mostly craft-based strategy to design. A substantial body of notations and tools can be found within the model-based user interface design literature, however an explicit treatment of metaphor and its mappings to other design views has yet to be addressed. We introduce the Interface Specification Meta-Language (ISML) framework and demonstrate its use in comparing the semantic and syntactic features of an interactive system. Challenges facing this research are outlined and further work proposed

    Assessing Visualization Techniques for the Search Process in Digital Libraries

    Full text link
    In this paper we present an overview of several visualization techniques to support the search process in Digital Libraries (DLs). The search process typically can be separated into three major phases: query formulation and refinement, browsing through result lists and viewing and interacting with documents and their properties. We discuss a selection of popular visualization techniques that have been developed for the different phases to support the user during the search process. Along prototypes based on the different techniques we show how the approaches have been implemented. Although various visualizations have been developed in prototypical systems very few of these approaches have been adapted into today's DLs. We conclude that this is most likely due to the fact that most systems are not evaluated intensely in real-life scenarios with real information seekers and that results of the interesting visualization techniques are often not comparable. We can say that many of the assessed systems did not properly address the information need of cur-rent users.Comment: 23 pages, 14 figures, pre-print to appear in "Wissensorganisation mit digitalen Technologien" (deGruyter

    A methodology for the design and evaluation of user interfaces for interactive information systems

    Get PDF
    The definition of proposed research addressing the development and validation of a methodology for the design and evaluation of user interfaces for interactive information systems is given. The major objectives of this research are: the development of a comprehensive, objective, and generalizable methodology for the design and evaluation of user interfaces for information systems; the development of equations and/or analytical models to characterize user behavior and the performance of a designed interface; the design of a prototype system for the development and administration of user interfaces; and the design and use of controlled experiments to support the research and test/validate the proposed methodology. The proposed design methodology views the user interface as a virtual machine composed of three layers: an interactive layer, a dialogue manager layer, and an application interface layer. A command language model of user system interactions is presented because of its inherent simplicity and structured approach based on interaction events. All interaction events have a common structure based on common generic elements necessary for a successful dialogue. It is shown that, using this model, various types of interfaces could be designed and implemented to accommodate various categories of users. The implementation methodology is discussed in terms of how to store and organize the information

    Scientists in the MIST: Simplifying Interface Design for End Users

    Get PDF
    We are building a Malleable Interactive Software Toolkit (MIST), a tool set and infrastructure to simplify the design and construction of dynamically-reconfigurable (malleable) interactive software. Malleable software offers the end-user powerful tools to reshape their interactive environment on the fly. We aim to make the construction of such software straightforward, and to make reconfiguration of the resulting systems approachable and manageable to an educated, but non-specialist, user. To do so, we draw on a diverse body of existing research on alternative approaches to user interface (UI) and interactive software construction, including declarative UI languages, constraint-based programming and UI management, reflection and data-driven programming, and visual programming techniques

    Using Visualization to Support Data Mining of Large Existing Databases

    Get PDF
    In this paper. we present ideas how visualization technology can be used to improve the difficult process of querying very large databases. With our VisDB system, we try to provide visual support not only for the query specification process. but also for evaluating query results and. thereafter, refining the query accordingly. The main idea of our system is to represent as many data items as possible by the pixels of the display device. By arranging and coloring the pixels according to the relevance for the query, the user gets a visual impression of the resulting data set and of its relevance for the query. Using an interactive query interface, the user may change the query dynamically and receives immediate feedback by the visual representation of the resulting data set. By using multiple windows for different parts of the query, the user gets visual feedback for each part of the query and, therefore, may easier understand the overall result. To support complex queries, we introduce the notion of approximate joins which allow the user to find data items that only approximately fulfill join conditions. We also present ideas how our technique may be extended to support the interoperation of heterogeneous databases. Finally, we discuss the performance problems that are caused by interfacing to existing database systems and present ideas to solve these problems by using data structures supporting a multidimensional search of the database

    Knowledge-based graphical interfaces for presenting technical information

    Get PDF
    Designing effective presentations of technical information is extremely difficult and time-consuming. Moreover, the combination of increasing task complexity and declining job skills makes the need for high-quality technical presentations especially urgent. We believe that this need can ultimately be met through the development of knowledge-based graphical interfaces that can design and present technical information. Since much material is most naturally communicated through pictures, our work has stressed the importance of well-designed graphics, concentrating on generating pictures and laying out displays containing them. We describe APEX, a testbed picture generation system that creates sequences of pictures that depict the performance of simple actions in a world of 3D objects. Our system supports rules for determining automatically the objects to be shown in a picture, the style and level of detail with which they should be rendered, the method by which the action itself should be indicated, and the picture's camera specification. We then describe work on GRIDS, an experimental display layout system that addresses some of the problems in designing displays containing these pictures, determining the position and size of the material to be presented

    Refinement for user interface designs

    Get PDF
    Formal approaches to software development require that we correctly describe (or specify) systems in order to prove properties about our proposed solution prior to building it. We must then follow a rigorous process to transform our specification into an implementation to ensure that the properties we have proved are retained. Different transformation, or refinement, methods exist for different formal methods, but they all seek to ensure that we can guide the transformation in a way which preserves the desired properties of the system. Refinement methods also allow us to subsequently compare two systems to see if a refinement relation exists between the two. When we design and build the user interfaces of our systems we are similarly keen to ensure that they have certain properties before we build them. For example, do they satisfy the requirements of the user? Are they designed with known good design principles and usability considerations in mind? Are they correct in terms of the overall system specification? However, when we come to implement our interface designs we do not have a defined process to follow which ensures that we maintain these properties as we transform the design into code. Instead, we rely on our judgement and belief that we are doing the right thing and subsequent user testing to ensure that our final solution remains useable and satisfactory. We suggest an alternative approach, which is to define a refinement process for user interfaces which will allow us to maintain the same rigorous standards we apply to the rest of the system when we implement our user interface designs

    Transportable Applications Environment (TAE) Plus: A NASA tool for building and managing graphical user interfaces

    Get PDF
    The Transportable Applications Environment (TAE) Plus, developed at GSFC, is an advanced portable user interface development environment which simplifies the process of creating and managing complex application graphical user interfaces (GUI's), supports prototyping, allows applications to be ported easily between different platforms and encourages appropriate levels of user interface consistency between applications. The following topics are discussed: the capabilities of the TAE Plus tool; how the implementation has utilized state-of-the-art technologies within graphic workstations; and how it has been used both within and outside of NASA
    • ā€¦
    corecore