7,191 research outputs found

    Applications of Soft Computing in Mobile and Wireless Communications

    Get PDF
    Soft computing is a synergistic combination of artificial intelligence methodologies to model and solve real world problems that are either impossible or too difficult to model mathematically. Furthermore, the use of conventional modeling techniques demands rigor, precision and certainty, which carry computational cost. On the other hand, soft computing utilizes computation, reasoning and inference to reduce computational cost by exploiting tolerance for imprecision, uncertainty, partial truth and approximation. In addition to computational cost savings, soft computing is an excellent platform for autonomic computing, owing to its roots in artificial intelligence. Wireless communication networks are associated with much uncertainty and imprecision due to a number of stochastic processes such as escalating number of access points, constantly changing propagation channels, sudden variations in network load and random mobility of users. This reality has fuelled numerous applications of soft computing techniques in mobile and wireless communications. This paper reviews various applications of the core soft computing methodologies in mobile and wireless communications

    An Efficient Method for online Detection of Polychronous Patterns in Spiking Neural Network

    Get PDF
    Polychronous neural groups are effective structures for the recognition of precise spike-timing patterns but the detection method is an inefficient multi-stage brute force process that works off-line on pre-recorded simulation data. This work presents a new model of polychronous patterns that can capture precise sequences of spikes directly in the neural simulation. In this scheme, each neuron is assigned a randomized code that is used to tag the post-synaptic neurons whenever a spike is transmitted. This creates a polychronous code that preserves the order of pre-synaptic activity and can be registered in a hash table when the post-synaptic neuron spikes. A polychronous code is a sub-component of a polychronous group that will occur, along with others, when the group is active. We demonstrate the representational and pattern recognition ability of polychronous codes on a direction selective visual task involving moving bars that is typical of a computation performed by simple cells in the cortex. The computational efficiency of the proposed algorithm far exceeds existing polychronous group detection methods and is well suited for online detection.Comment: 17 pages, 8 figure

    IEEE Access Special Section Editorial: Biologically Inspired Image Processing Challenges and Future Directions

    Get PDF
    Human kind is exposed to large amounts of data. According to statistics, more than 80% of information received by humans comes from the visual system. Therefore, image information processing is not only an important research topic but also a challenging task. The unique information processing mechanism of the human visual system provides it with fast, accurate, and efficient image processing capabilities. At present, many advanced image analysis and processing techniques have been widely used in image communication, geographic information systems, medical image analysis, and virtual reality. However, there is still a large gap between these technologies and the human visual system. Therefore, building an image system research mechanism based on the biological vision system is an attractive but difficult target. Although it is a challenge, it can also be considered as an opportunity which utilizes biologically inspired ideas. Meanwhile, through the integration of neural biology, biological perception mechanisms, and computer science and mathematical science, related research can bridge biological vision and computer vision. Finally, the biologically inspired image analysis and processing system is expected to be built on the basis of further consideration of the learning mechanism of the human brain

    Personal Identification Using Ultrawideband Radar Measurement of Walking and Sitting Motions and a Convolutional Neural Network

    Full text link
    This study proposes a personal identification technique that applies machine learning with a two-layered convolutional neural network to spectrogram images obtained from radar echoes of a target person in motion. The walking and sitting motions of six participants were measured using an ultrawideband radar system. Time-frequency analysis was applied to the radar signal to generate spectrogram images containing the micro-Doppler components associated with limb movements. A convolutional neural network was trained using the spectrogram images with personal labels to achieve radar-based personal identification. The personal identification accuracies were evaluated experimentally to demonstrate the effectiveness of the proposed technique.Comment: 9 pages, 7 figures, and 3 table

    Transcending conventional biometry frontiers: Diffusive Dynamics PPG Biometry

    Get PDF
    In the first half of the 20th century, a first pulse oximeter was available to measure blood flow changes in the peripheral vascular net. However, it was not until recent times the PhotoPlethysmoGraphic (PPG) signal used to monitor many physiological parameters in clinical environments. Over the last decade, its use has extended to the area of biometrics, with different methods that allow the extraction of characteristic features of each individual from the PPG signal morphology, highly varying with time and the physical states of the subject. In this paper, we present a novel PPG-based biometric authentication system based on convolutional neural networks. Contrary to previous approaches, our method extracts the PPG signal's biometric characteristics from its diffusive dynamics, characterized by geometric patterns image in the (p, q)-planes specific to the 0-1 test. The diffusive dynamics of the PPG signal are strongly dependent on the vascular bed's biostructure, which is unique to each individual, and highly stable over time and other psychosomatic conditions. Besides its robustness, our biometric method is anti-spoofing, given the convoluted nature of the blood network. Our biometric authentication system reaches very low Equal Error Rates (ERRs) with a single attempt, making it possible, by the very nature of the envisaged solution, to implement it in miniature components easily integrated into wearable biometric systems.Comment: 18 pages, 6 figures, 4 table
    • …
    corecore