6,400 research outputs found

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Wide area detection system: Conceptual design study

    Get PDF
    An integrated sensor for traffic surveillance on mainline sections of urban freeways is described. Applicable imaging and processor technology is surveyed and the functional requirements for the sensors and the conceptual design of the breadboard sensors are given. Parameters measured by the sensors include lane density, speed, and volume. The freeway image is also used for incident diagnosis

    Comprehensive Survey and Analysis of Techniques, Advancements, and Challenges in Video-Based Traffic Surveillance Systems

    Get PDF
    The challenges inherent in video surveillance are compounded by a several factors, like dynamic lighting conditions, the coordination of object matching, diverse environmental scenarios, the tracking of heterogeneous objects, and coping with fluctuations in object poses, occlusions, and motion blur. This research endeavor aims to undertake a rigorous and in-depth analysis of deep learning- oriented models utilized for object identification and tracking. Emphasizing the development of effective model design methodologies, this study intends to furnish a exhaustive and in-depth analysis of object tracking and identification models within the specific domain of video surveillance

    Veliki nadzorni sustav: detekcija i praćenje sumnjivih obrazaca pokreta u prometnim gužvama

    Get PDF
    The worldwide increasing sentiment of insecurity gave birth to a new era, shaking thereby the intelligent video-surveillance systems design and deployment. The large-scale use of these means has prompted the creation of new needs in terms of analysis and interpretation. For this purpose, behavior recognition and scene understanding related applications have become more captivating to a significant number of computer vision researchers, particularly when crowded scenes are concerned. So far, motion analysis and tracking remain challenging due to significant visual ambiguities, which encourage looking into further keys. By this work, we present a new framework to recognize various motion patterns, extract abnormal behaviors and track them over a multi-camera traffic surveillance system. We apply a density-based technique to cluster motion vectors produced by optical flow, and compare them with motion pattern models defined earlier. Non-identified clusters are treated as suspicious and simultaneously tracked over an overlapping camera network for as long as possible. To aiming the network configuration, we designed an active camera scheduling strategy where camera assignment was realized via an improved Weighted Round-Robin algorithm. To validate our approach, experiment results are presented and discussed.Širom svijeta rasprostranjeni osjećaj nesigurnosti postavio je temelje za dizajniranje i implementaciju inteligentnih sustava nadzora. Velika upotreba ovih sredstava potaknula je stvaranje novih potreba analize i interpretacije. U ovu svrhu, prepoznavanje ponašanja i razumijevanje prizora postaju sve privlačnije povezane primjene značajnom broju istraživača računalne vizije, posebno kada se radi o vrlo prometnim prizorima. Analiza pokreta i slijeđenja ostalo je izazovno područje zbog značajnih vizualnih nejasnoća koje zahtijevaju daljnja istraživanja. U radu je prikazan novi okvir za prepoznavanje različitih uzoraka pokreta, izoliranje neprirodnih ponašanja i njihovo praćenje pomoću nadzornog sustava prometa s više kamera. Primjenjuje se na gustoći zasnovana tehnika skupa vektora pokreta sastavljenih iz optičkog toka te uspoređenih s ranije definiranim modelima uzoraka. Neidentificirani skupovi tretiraju se kao sumnjivi i istovremeno su praćeni mrežom s više preklapajućih kamera što je duže moguće. S ciljem konfiguriranja mreže, dizajnirana je strategija raspoređivanja aktivnih kamera gdje je dodjela kamere ostvarena pomoću unaprijeđenog "Weighted Round-Robin" algoritma

    A mathematical model for computerized car crash detection using computer vision techniques

    Full text link
    My proposed approach to the automatic detection of traffic accidents in a signalized intersection is presented here. In this method, a digital camera is strategically placed to view the entire intersection. The images are captured, processed and analyzed for the presence of vehicles and pedestrians in the proposed detection zones. Those images are further processed to detect if an accident has occurred; The mathematical model presented is a Poisson distribution that predicts the number of accidents in an intersection per week, which can be used as approximations for modeling the crash process. We believe that the crash process can be modeled by using a two-state method, which implies that the intersection is in one of two states: clear (no accident) or obstructed (accident). We can then incorporate a rule-based AI system, which will help us in identifying that a crash has taken or will possibly take place; We have modeled the intersection as a service facility, which processes vehicles in a relatively small amount of time. A traffic accident is then perceived as an interruption of that service

    Dataset Evaluation for Multi Vehicle Detection using Vision Based Techniques

    Get PDF
    Vehicle detection is one of the primal challenges of modern driver-assistance systems owing to the numerous factors, for instance, complicated surroundings, diverse types of vehicles with varied appearance and magnitude, low-resolution videos, fast-moving vehicles. It is utilized for multitudinous applications including traffic surveillance and collision prevention. This paper suggests a Vehicle Detection algorithm developed on Image Processing and Machine Learning. The presented algorithm is predicated on a Support Vector Machine(SVM) Classifier which employs feature vectors extracted via Histogram of Gradients(HOG) approach conducted on a semi-real time basis. A comparison study is presented stating the performance metrics of the algorithm on different datasets
    corecore