88,025 research outputs found

    Performance Evaluation and Optimization of Math-Similarity Search

    Full text link
    Similarity search in math is to find mathematical expressions that are similar to a user's query. We conceptualized the similarity factors between mathematical expressions, and proposed an approach to math similarity search (MSS) by defining metrics based on those similarity factors [11]. Our preliminary implementation indicated the advantage of MSS compared to non-similarity based search. In order to more effectively and efficiently search similar math expressions, MSS is further optimized. This paper focuses on performance evaluation and optimization of MSS. Our results show that the proposed optimization process significantly improved the performance of MSS with respect to both relevance ranking and recall.Comment: 15 pages, 8 figure

    The Art of Mathematics Retrieval

    Get PDF
    The design and architecture of MIaS (Math Indexer and Searcher), a system for mathematics retrieval is presented, and design decisions are discussed. We argue for an approach based on Presentation MathML using a similarity of math subformulae. The system was implemented as a math-aware search engine based on the state-of-the-art system Apache Lucene. Scalability issues were checked against more than 400,000 arXiv documents with 158 million mathematical formulae. Almost three billion MathML subformulae were indexed using a Solr-compatible Lucene.V článku je navržena architektura nového systému, MIaS (Math Indexer and Searcher), a návrh je zdůvodněn. Byl zvolen přístup založený na podobnosti matematických formulí v prezentačním MathML. Systém byl implementován a návrh verifikován na široce používaném indexačním systému Apache Lucene. Škálovatelnost byla ověřena na více než 400,000 odborných matematických článcích z archivu arXiv s 158 miliony matematickými formulemi. To představovalo indexování téměř tří bilionů matematických podformulí v MathML pomocí Solr-kompatibilního rozšíření Lucene

    Symbolic and Visual Retrieval of Mathematical Notation using Formula Graph Symbol Pair Matching and Structural Alignment

    Get PDF
    Large data collections containing millions of math formulae in different formats are available on-line. Retrieving math expressions from these collections is challenging. We propose a framework for retrieval of mathematical notation using symbol pairs extracted from visual and semantic representations of mathematical expressions on the symbolic domain for retrieval of text documents. We further adapt our model for retrieval of mathematical notation on images and lecture videos. Graph-based representations are used on each modality to describe math formulas. For symbolic formula retrieval, where the structure is known, we use symbol layout trees and operator trees. For image-based formula retrieval, since the structure is unknown we use a more general Line of Sight graph representation. Paths of these graphs define symbol pairs tuples that are used as the entries for our inverted index of mathematical notation. Our retrieval framework uses a three-stage approach with a fast selection of candidates as the first layer, a more detailed matching algorithm with similarity metric computation in the second stage, and finally when relevance assessments are available, we use an optional third layer with linear regression for estimation of relevance using multiple similarity scores for final re-ranking. Our model has been evaluated using large collections of documents, and preliminary results are presented for videos and cross-modal search. The proposed framework can be adapted for other domains like chemistry or technical diagrams where two visually similar elements from a collection are usually related to each other

    Effective Math-Aware Ad-Hoc Retrieval based on Structure Search and Semantic Similarities

    Get PDF
    Despite the prevalence of digital scientific and educational contents on the Internet, only a few search engines are capable to retrieve them efficiently and effectively. The main challenge in freely searching scientific literature arises from the presence of structured math formulas and their heterogeneous and contextually important surrounding words. This thesis introduces an effective math-aware, ad-hoc retrieval model that incorporates structure search and semantic similarities. Transformer-based neural retrievers have been adopted to capture additional semantics using domain-adapted supervised retrieval. To enable structure search, I suggest an unsupervised retrieval model that can filter potential mathematical formulas based on structure similarity. This similarity is determined by measuring the largest common substructure(s) in a formula tree representation, known as the Operator Tree (OPT). The structure matching is approximated by employing maximum matching of path-based structure features. The proposed structure similarity measurement can be tailored based on the desired effectiveness and efficiency trade-offs. It may consider various node types, such as operators and operands, and accommodate different numbers of common subtrees with varying weights. In addition to structure similarity, this unsupervised model also captures symbol substitutions through a greedy matching algorithm applied to the matched substructure(s). To achieve efficient structure search, I introduce a dynamic pruning algorithm to the problem of structure retrieval. The proposed retrieval algorithm efficiently identifies the maximum common subtree among formula candidates and safely eliminates potential structure matches that exceed a dynamic threshold. To accomplish this, three rank-safe pruning strategies are suggested and compared against exhaustive search baselines. Additionally, more aggressive thresholding policies are proposed to balance effectiveness with further speed improvements. A novel hierarchical inverted index has been implemented. This index is designed to be compatible with traditional information retrieval (IR) infrastructure and optimization techniques. To capture other semantic similarities, I have incorporated neural retrievers into a hybrid setting with structure search. This approach has achieved the state-of-the-art effectiveness in recent math information retrieval tasks. In comparison to strict and unsupervised matching, I have found that supervised neural retrievers are able to capture additional semantic similarities in a highly complementary manner. In order to learn effective representations in heterogeneous math contents, I have proposed a novel pretraining architecture that can improve the contextual awareness between math and its surrounding texts. This pretraining scheme generates effective downstream single-vector representations, eliminating the efficiency bottleneck from using multi-vector dense representations. In the end, the thesis examines future directions, specifically the integration of recent advancements in language modeling. This includes incorporating ongoing exciting developments of large language models for improved math information retrieval. A preliminary evaluation has been conducted to assess the impact of these advancements

    Which one is better: presentation-based or content-based math search?

    Full text link
    Mathematical content is a valuable information source and retrieving this content has become an important issue. This paper compares two searching strategies for math expressions: presentation-based and content-based approaches. Presentation-based search uses state-of-the-art math search system while content-based search uses semantic enrichment of math expressions to convert math expressions into their content forms and searching is done using these content-based expressions. By considering the meaning of math expressions, the quality of search system is improved over presentation-based systems

    VMEXT: A Visualization Tool for Mathematical Expression Trees

    Full text link
    Mathematical expressions can be represented as a tree consisting of terminal symbols, such as identifiers or numbers (leaf nodes), and functions or operators (non-leaf nodes). Expression trees are an important mechanism for storing and processing mathematical expressions as well as the most frequently used visualization of the structure of mathematical expressions. Typically, researchers and practitioners manually visualize expression trees using general-purpose tools. This approach is laborious, redundant, and error-prone. Manual visualizations represent a user's notion of what the markup of an expression should be, but not necessarily what the actual markup is. This paper presents VMEXT - a free and open source tool to directly visualize expression trees from parallel MathML. VMEXT simultaneously visualizes the presentation elements and the semantic structure of mathematical expressions to enable users to quickly spot deficiencies in the Content MathML markup that does not affect the presentation of the expression. Identifying such discrepancies previously required reading the verbose and complex MathML markup. VMEXT also allows one to visualize similar and identical elements of two expressions. Visualizing expression similarity can support support developers in designing retrieval approaches and enable improved interaction concepts for users of mathematical information retrieval systems. We demonstrate VMEXT's visualizations in two web-based applications. The first application presents the visualizations alone. The second application shows a possible integration of the visualizations in systems for mathematical knowledge management and mathematical information retrieval. The application converts LaTeX input to parallel MathML, computes basic similarity measures for mathematical expressions, and visualizes the results using VMEXT.Comment: 15 pages, 4 figures, Intelligent Computer Mathematics - 10th International Conference CICM 2017, Edinburgh, UK, July 17-21, 2017, Proceeding

    A two-base encoded DNA sequence alignment problem in computational biology

    Get PDF
    The recent introduction of instruments capable of producing millions of DNA sequence reads in a single run is rapidly changing the landscape of genetics. The primary objective of the "sequence alignment" problem is to search for a new algorithm that facilitates the use of two-base encoded data for large-scale re-sequencing projects. This algorithm should be able to perform local sequence alignment as well as error detection and correction in a reliable and systematic manner, enabling the direct comparison of encoded DNA sequence reads to a candidate reference DNA sequence. We will first briefly review two well-known sequence alignment approaches and provide a rudimentary improvement for implementation on parallel systems. Then, we carefully examin a unique sequencing technique known as the SOLiDTM System that can be implemented, and follow by the results from the global and local sequence alignment. In this report, the team presents an explanation of the algorithms for color space sequence data from the high-throughput re-sequencing technology and a theoretical parallel approach to the dynamic programming method for global and local alignment. The combination of the di-base approach and dynamic programming provides a possible viewpoint for large-scale re-sequencing projects. We anticipate the use of distributed computing to be the next-generation engine for large-scale problems like such
    corecore