4,392 research outputs found

    Clafer: Lightweight Modeling of Structure, Behaviour, and Variability

    Get PDF
    Embedded software is growing fast in size and complexity, leading to intimate mixture of complex architectures and complex control. Consequently, software specification requires modeling both structures and behaviour of systems. Unfortunately, existing languages do not integrate these aspects well, usually prioritizing one of them. It is common to develop a separate language for each of these facets. In this paper, we contribute Clafer: a small language that attempts to tackle this challenge. It combines rich structural modeling with state of the art behavioural formalisms. We are not aware of any other modeling language that seamlessly combines these facets common to system and software modeling. We show how Clafer, in a single unified syntax and semantics, allows capturing feature models (variability), component models, discrete control models (automata) and variability encompassing all these aspects. The language is built on top of first order logic with quantifiers over basic entities (for modeling structures) combined with linear temporal logic (for modeling behaviour). On top of this semantic foundation we build a simple but expressive syntax, enriched with carefully selected syntactic expansions that cover hierarchical modeling, associations, automata, scenarios, and Dwyer's property patterns. We evaluate Clafer using a power window case study, and comparing it against other notations that substantially overlap with its scope (SysML, AADL, Temporal OCL and Live Sequence Charts), discussing benefits and perils of using a single notation for the purpose

    Flexible and Configurable Verification Policies with Omnibus

    Get PDF
    The three main assertion-based verification approaches are: run-time assertion checking(RAC), extended static checking (ESC) and full formal verification (FFV). Each approach offers a different balance between rigour and ease of use, making them appropriate in different situations. Our goal is to explore the use of these approaches together in a flexible way, enabling an application to be broken down into parts with different reliability requirements and different verification approaches used in each part. We explain the benefits of using the approaches together, present a set of guidelines to avoid potential conflicts and give an overview of how the Omnibus IDE provides support for the full range of assertion-based verification approaches within a single tool

    Implementing Cryptographic Hash Functions on CAN Bus

    Get PDF
    This project is a proof-of-concept for the use of cryptography on the Controller Area Network in automotive vehicles as a message verification standard. The project was implemented by creating four electrical control units that could implement the behavior of a car on a physical CAN Harness

    Putting the Semantics into Semantic Versioning

    Full text link
    The long-standing aspiration for software reuse has made astonishing strides in the past few years. Many modern software development ecosystems now come with rich sets of publicly-available components contributed by the community. Downstream developers can leverage these upstream components, boosting their productivity. However, components evolve at their own pace. This imposes obligations on and yields benefits for downstream developers, especially since changes can be breaking, requiring additional downstream work to adapt to. Upgrading too late leaves downstream vulnerable to security issues and missing out on useful improvements; upgrading too early results in excess work. Semantic versioning has been proposed as an elegant mechanism to communicate levels of compatibility, enabling downstream developers to automate dependency upgrades. While it is questionable whether a version number can adequately characterize version compatibility in general, we argue that developers would greatly benefit from tools such as semantic version calculators to help them upgrade safely. The time is now for the research community to develop such tools: large component ecosystems exist and are accessible, component interactions have become observable through automated builds, and recent advances in program analysis make the development of relevant tools feasible. In particular, contracts (both traditional and lightweight) are a promising input to semantic versioning calculators, which can suggest whether an upgrade is likely to be safe.Comment: to be published as Onward! Essays 202

    The Omnibus language and integrated verification approach

    Get PDF
    This thesis describes the Omnibus language and its supporting framework of tools. Omnibus is an object-oriented language which is superficially similar to the Java programming language but uses value semantics for objects and incorporates a behavioural interface specification language. Specifications are defined in terms of a subset of the query functions of the classes for which a frame-condition logic is provided. The language is well suited to the specification of modelling types and can also be used to write implementations. An overview of the language is presented and then specific aspects such as subtleties in the frame-condition logic, the implementation of value semantics and the role of equality are discussed. The challenges of reference semantics are also discussed. The Omnibus language is supported by an integrated verification tool which provides support for three assertion-based verification approaches: run-time assertion checking, extended static checking and full formal verification. The different approaches provide different balances between rigour and ease of use. The Omnibus tool allows these approaches to be used together in different parts of the same project. Guidelines are presented in order to help users avoid conflicts when using the approaches together. The use of the integrated verification approach to meet two key requirements of safe software component reuse, to have clear descriptions and some form of certification, are discussed along with the specialised facilities provided by the Omnibus tool to manage the distribution of components. The principles of the implementation of the tool are described, focussing on the integrated static verifier module that supports both extended static checking and full formal verification through the use of an intermediate logic. The different verification approaches are used to detect and correct a range of errors in a case study carried out using the Omnibus language. The case study is of a library system where copies of books, CDs and DVDs are loaned out to members. The implementation consists of 2278 lines of Omnibus code spread over 15 classes. To allow direct comparison of the different assertion-based verification approaches considered, run-time assertion checking, extended static checking and then full formal verification are applied to the application in its entirety. This directly illustrates the different balances between error coverage and ease-of-use which the approaches offer. Finally, the verification policy system is used to allow the approaches to be used together to verify different parts of the application

    Unified System on Chip RESTAPI Service (USOCRS)

    Get PDF
    Abstract. This thesis investigates the development of a Unified System on Chip RESTAPI Service (USOCRS) to enhance the efficiency and effectiveness of SOC verification reporting. The research aims to overcome the challenges associated with the transfer, utilization, and interpretation of SoC verification reports by creating a unified platform that integrates various tools and technologies. The research methodology used in this study follows a design science approach. A thorough literature review was conducted to explore existing approaches and technologies related to SOC verification reporting, automation, data visualization, and API development. The review revealed gaps in the current state of the field, providing a basis for further investigation. Using the insights gained from the literature review, a system design and implementation plan were developed. This plan makes use of cutting-edge technologies such as FASTAPI, SQL and NoSQL databases, Azure Active Directory for authentication, and Cloud services. The Verification Toolbox was employed to validate SoC reports based on the organization’s standards. The system went through manual testing, and user satisfaction was evaluated to ensure its functionality and usability. The results of this study demonstrate the successful design and implementation of the USOCRS, offering SOC engineers a unified and secure platform for uploading, validating, storing, and retrieving verification reports. The USOCRS facilitates seamless communication between users and the API, granting easy access to vital information including successes, failures, and test coverage derived from submitted SoC verification reports. By automating and standardizing the SOC verification reporting process, the USOCRS eliminates manual and repetitive tasks usually done by developers, thereby enhancing productivity, and establishing a robust and reliable framework for report storage and retrieval. Through the integration of diverse tools and technologies, the USOCRS presents a comprehensive solution that adheres to the required specifications of the SOC schema used within the organization. Furthermore, the USOCRS significantly improves the efficiency and effectiveness of SOC verification reporting. It facilitates the submission process, reduces latency through optimized data storage, and enables meaningful extraction and analysis of report data

    Digital Construction of Traditional Baruk in Sarawak, Malaysia

    Get PDF
    The traditional Baruk in Sarawak has gone through some architectural changes in terms of its material and function due to the urban modernization and safety concern. Therefore, the research aims to construct the Three-Dimensional (3D) model of the building using digital close-range photogrammetry. The exploratory study can be categorized into four phases consist of Site Selection; Data Acquisition; Data Processing; and 3D Modelling. The 3D model generated from the photogrammetry software presents the result of the dense point clouds. The study could give fundamental guidelines on using a mobile device in digital close-range photogrammetry techniques. Keywords: Digital construction; traditional architecture, digital close-range photogrammetry, heritage documentation. eISSN: 2398-4287© 2020. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer-review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. DOI: https://doi.org/10.21834/ebpj.v5i14.224
    • …
    corecore