82,051 research outputs found

    Reliable fault-tolerant model predictive control of drinking water transport networks

    Get PDF
    This paper proposes a reliable fault-tolerant model predictive control applied to drinking water transport networks. After a fault has occurred, the predictive controller should be redesigned to cope with the fault effect. Before starting to apply the fault-tolerant control strategy, it should be evaluated whether the predictive controller will be able to continue operating after the fault appearance. This is done by means of a structural analysis to determine loss of controllability after the fault complemented with feasibility analysis of the optimization problem related to the predictive controller design, so as to consider the fault effect in actuator constraints. Moreover, by evaluating the admissibility of the different actuator-fault configurations, critical actuators regarding fault tolerance can be identified considering structural, feasibility, performance and reliability analyses. On the other hand, the proposed approach allows a degradation analysis of the system to be performed. As a result of these analyses, the predictive controller design can be modified by adapting constraints such that the best achievable performance with some pre-established level of reliability will be achieved. The proposed approach is tested on the Barcelona drinking water transport network.Postprint (author's final draft

    Advanced Quantizer Designs for FDD-Based FD-MIMO Systems Using Uniform Planar Arrays

    Full text link
    Massive multiple-input multiple-output (MIMO) systems, which utilize a large number of antennas at the base station, are expected to enhance network throughput by enabling improved multiuser MIMO techniques. To deploy many antennas in reasonable form factors, base stations are expected to employ antenna arrays in both horizontal and vertical dimensions, which is known as full-dimension (FD) MIMO. The most popular two-dimensional array is the uniform planar array (UPA), where antennas are placed in a grid pattern. To exploit the full benefit of massive MIMO in frequency division duplexing (FDD), the downlink channel state information (CSI) should be estimated, quantized, and fed back from the receiver to the transmitter. However, it is difficult to accurately quantize the channel in a computationally efficient manner due to the high dimensionality of the massive MIMO channel. In this paper, we develop both narrowband and wideband CSI quantizers for FD-MIMO taking the properties of realistic channels and the UPA into consideration. To improve quantization quality, we focus on not only quantizing dominant radio paths in the channel, but also combining the quantized beams. We also develop a hierarchical beam search approach, which scans both vertical and horizontal domains jointly with moderate computational complexity. Numerical simulations verify that the performance of the proposed quantizers is better than that of previous CSI quantization techniques.Comment: 15 pages, 6 figure

    On the complexity of solving linear congruences and computing nullspaces modulo a constant

    Full text link
    We consider the problems of determining the feasibility of a linear congruence, producing a solution to a linear congruence, and finding a spanning set for the nullspace of an integer matrix, where each problem is considered modulo an arbitrary constant k>1. These problems are known to be complete for the logspace modular counting classes {Mod_k L} = {coMod_k L} in special case that k is prime (Buntrock et al, 1992). By considering variants of standard logspace function classes --- related to #L and functions computable by UL machines, but which only characterize the number of accepting paths modulo k --- we show that these problems of linear algebra are also complete for {coMod_k L} for any constant k>1. Our results are obtained by defining a class of functions FUL_k which are low for {Mod_k L} and {coMod_k L} for k>1, using ideas similar to those used in the case of k prime in (Buntrock et al, 1992) to show closure of Mod_k L under NC^1 reductions (including {Mod_k L} oracle reductions). In addition to the results above, we briefly consider the relationship of the class FUL_k for arbitrary moduli k to the class {F.coMod_k L} of functions whose output symbols are verifiable by {coMod_k L} algorithms; and consider what consequences such a comparison may have for oracle closure results of the form {Mod_k L}^{Mod_k L} = {Mod_k L} for composite k.Comment: 17 pages, one Appendix; minor corrections and revisions to presentation, new observations regarding the prospect of oracle closures. Comments welcom

    Graph Kernels via Functional Embedding

    Full text link
    We propose a representation of graph as a functional object derived from the power iteration of the underlying adjacency matrix. The proposed functional representation is a graph invariant, i.e., the functional remains unchanged under any reordering of the vertices. This property eliminates the difficulty of handling exponentially many isomorphic forms. Bhattacharyya kernel constructed between these functionals significantly outperforms the state-of-the-art graph kernels on 3 out of the 4 standard benchmark graph classification datasets, demonstrating the superiority of our approach. The proposed methodology is simple and runs in time linear in the number of edges, which makes our kernel more efficient and scalable compared to many widely adopted graph kernels with running time cubic in the number of vertices
    corecore