9 research outputs found

    Fast Track Study

    Get PDF
    The NASA Fast Track Study supports the efforts of a Special Study Group (SSG) made up of members of the Advanced Project Management Class number 23 (APM-23) that met at the Wallops Island Management Education Center from April 28 - May 8, 1996. Members of the Class expressed interest to Mr. Vem Weyers in having an input to the NASA Policy Document (NPD) 7120.4, that will replace NASA Management Institute (NMI) 7120.4, and the NASA Program/Project Management Guide. The APM-23 SSG was tasked with assisting in development of NASA policy on managing Fast Track Projects, defined as small projects under $150 million and completed within three years. 'Me approach of the APM-23 SSG was to gather data on successful projects working in a 'Better, Faster, Cheaper' environment, within and outside of NASA and develop the Fast Track Project section of the NASA Program/Project Management Guide. Fourteen interviews and four other data gathering efforts were conducted by the SSG, and 16 were conducted by Strategic Resources, Inc. (SRI), including five interviews at the Jet Propulsion Laboratory (JPL) and one at the Applied Physics Laboratory (APL). The interviews were compiled and analyzed for techniques and approaches commonly used to meet severe cost and schedule constraints

    Synthesis and monolithic integration of analogue signal processing networks

    Get PDF
    Data traffic of future 5G telecommunication systems is projected to increase 10 000-fold compared to current rates. 5G fronthaul links are therefore expected to operate in the mm-wave spectrum with some preliminary International Telecommunication Union specifications set for the 71-76 and 81-86 GHz bands. Processing 5 GHz as a single contiguous band in real-time, using existing digital signal processing (DSP) systems, is exceedingly challenging. A similar challenge exists in radio astronomy, with the Square Kilometer Array project expecting data throughput rates of 15 Tbits/s at its completion. Speed improvements on existing state-of-the-art DSPs of 2-3 orders of magnitude are therefore required to meet future demands. One possible mitigating approach to processing wideband data in real-time is to replace some DSP blocks with analog signal processing (ASP) equivalents, since analogue devices outperform their digital counterparts in terms of cost, power consumption and the maximum attainable bandwidth. The fundamental building block of any ASP is an all-pass network of prescribed response, which can always be synthesized by cascaded first- and second-order all-pass sections (with two cascaded first-order sections being a special case of the latter). The monolithic integration of all-pass networks in commercial CMOS and BiCMOS technology nodes is a key consideration for commercial adaptation of ASPs, since it supports mass production at reduced costs and operating power requirements, making the ASP approach feasible. However, this integration has presented a number of yet unsolved challenges. Firstly, the state-of-the-art methods for synthesizing quasi-arbitrary group delay functions using all-pass elements lack a theoretical synthesis procedure that guarantees minimum-order networks. In this work an analytically-based solution to the synthesis problem is presented that produces an all-pass network with a response approximating the required group delay to within an arbitrary minimax error. This method is shown to work for any physical realization of second-order all-pass elements, is guaranteed to converge to a global optimum solution without any choice of seed values as an input, and allows synthesis of pre-defined networks described either analytically or numerically. Secondly, second-order all-pass networks are currently primarily implemented in off-chip planar media, which is unsuited for high volume production. Component sensitivity, process tolerances and on-chip parasitics often make proposed on-chip designs impractical. Consequently, to date, no measured results of a dispersive on-chip second-order all-pass network suitable for ASP applications (delay Q-value (QD) larger than 1) have been presented in either CMOS or BiCMOS technology nodes. In this work, the first ever on-chip CMOS second-order all-pass network is proposed with a measured QD-value larger than 1. Measurements indicate a post-tuning bandwidth of 280 MHz, peak-to-nominal delay variation of 10 ns, QD-value of 1.15 and magnitude variation of 3.1 dB. An active on-chip mm-wave second-order all-pass network is further demonstrated in a 130 nm SiGe BiCMOS technology node with a bandwidth of 40 GHz, peak-to-nominal delay of 62 ps, QD-value of 3.6 and a magnitude ripple of 1.4 dB. This is the first time that measurement results of a mm-wave bandwidth second-order all-pass network have been reported. This work therefore presents the first step to monolithically integrating ASP solutions to conventional DSP problems, thereby enabling ultra-wideband signal processing on-chip in commercial technology nodes.Thesis (PhD)--University of Pretoria, 2018.Square Kilometer Array (SKA) project - postgraduate scholarshipElectrical, Electronic and Computer EngineeringPhDUnrestricte

    Null convention logic circuits for asynchronous computer architecture

    Get PDF
    For most of its history, computer architecture has been able to benefit from a rapid scaling in semiconductor technology, resulting in continuous improvements to CPU design. During that period, synchronous logic has dominated because of its inherent ease of design and abundant tools. However, with the scaling of semiconductor processes into deep sub-micron and then to nano-scale dimensions, computer architecture is hitting a number of roadblocks such as high power and increased process variability. Asynchronous techniques can potentially offer many advantages compared to conventional synchronous design, including average case vs. worse case performance, robustness in the face of process and operating point variability and the ready availability of high performance, fine grained pipeline architectures. Of the many alternative approaches to asynchronous design, Null Convention Logic (NCL) has the advantage that its quasi delay-insensitive behavior makes it relatively easy to set up complex circuits without the need for exhaustive timing analysis. This thesis examines the characteristics of an NCL based asynchronous RISC-V CPU and analyses the problems with applying NCL to CPU design. While a number of university and industry groups have previously developed small 8-bit microprocessor architectures using NCL techniques, it is still unclear whether these offer any real advantages over conventional synchronous design. A key objective of this work has been to analyse the impact of larger word widths and more complex architectures on NCL CPU implementations. The research commenced by re-evaluating existing techniques for implementing NCL on programmable devices such as FPGAs. The little work that has been undertaken previously on FPGA implementations of asynchronous logic has been inconclusive and seems to indicate that asynchronous systems cannot be easily implemented in these devices. However, most of this work related to an alternative technique called bundled data, which is not well suited to FPGA implementation because of the difficulty in controlling and matching delays in a 'bundle' of signals. On the other hand, this thesis clearly shows that such applications are not only possible with NCL, but there are some distinct advantages in being able to prototype complex asynchronous systems in a field-programmable technology such as the FPGA. A large part of the value of NCL derives from its architectural level behavior, inherent pipelining, and optimization opportunities such as the merging of register and combina- tional logic functions. In this work, a number of NCL multiplier architectures have been analyzed to reveal the performance trade-offs between various non-pipelined, 1D and 2D organizations. Two-dimensional pipelining can easily be applied to regular architectures such as array multipliers in a way that is both high performance and area-efficient. It was found that the performance of 2D pipelining for small networks such as multipliers is around 260% faster than the equivalent non-pipelined design. However, the design uses 265% more transistors so the methodology is mainly of benefit where performance is strongly favored over area. A pipelined 32bit x 32bit signed Baugh-Wooley multiplier with Wallace-Tree Carry Save Adders (CSA), which is representative of a real design used for CPUs and DSPs, was used to further explore this concept as it is faster and has fewer pipeline stages compared to the normal array multiplier using Ripple-Carry adders (RCA). It was found that 1D pipelining with ripple-carry chains is an efficient implementation option but becomes less so for larger multipliers, due to the completion logic for which the delay time depends largely on the number of bits involved in the completion network. The average-case performance of ripple-carry adders was explored using random input vectors and it was observed that it offers little advantage on the smaller multiplier blocks, but this particular timing characteristic of asynchronous design styles be- comes increasingly more important as word size grows. Finally, this research has resulted in the development of the first 32-Bit asynchronous RISC-V CPU core. Called the Redback RISC, the architecture is a structure of pipeline rings composed of computational oscillations linked with flow completeness relationships. It has been written using NELL, a commercial description/synthesis tool that outputs standard Verilog. The Redback has been analysed and compared to two approximately equivalent industry standard 32-Bit synchronous RISC-V cores (PicoRV32 and Rocket) that are already fabricated and used in industry. While the NCL implementation is larger than both commercial cores it has similar performance and lower power compared to the PicoRV32. The implementation results were also compared against an existing NCL design tool flow (UNCLE), which showed how much the results of these implementation strategies differ. The Redback RISC has achieved similar level of throughput and 43% better power and 34% better energy compared to one of the synchronous cores with the same benchmark test and test condition such as input sup- ply voltage. However, it was shown that area is the biggest drawback for NCL CPU design. The core is roughly 2.5× larger than synchronous designs. On the other hand its area is still 2.9× smaller than previous designs using UNCLE tools. The area penalty is largely due to the unavoidable translation into a dual-rail topology when using the standard NCL cell library

    Pest Management; Proceedings of an International Conference, October 25-29, 1976

    Get PDF
    Pests and people were competitors even before the development of agriculture. Control of pests has involved genetic breeding for resistance, cultural practices, biological control, and, preeminently, pesticides. Such control measures were the product of the union of knowledge from biology, ecology, chemistry, and genetics. Increasingly, however, new problems have emerged--unexpected monsters from the dark. Now a new union of disciplines has joined in an approach to pest management that emphasizes, not new "magic bullets", but, rather, optimal ways to use existing techniques of control. This new union joins ecology and economics with mathematical modelling techniques and methods from the policy sciences, particularly optimization. This book reports the results of a five-day international conference held in Laxenburg, Austria, and hosted by the International Institute for Applied Systems Analysis, at which the five groups leading this new advance exchanged ideas and experiences. Each group, from Canada, Japan, the UK, the USA, and the USSR, described one or more examples of case studies of pest management in their country. The various mathematical models developed to describe the dynamics of the pest population and its interaction with the affected crop and attempts at its control are presented in some detail in this volume, together with the successful results of using the models to obtain the best possible control of particular pests. In addition, the research and educational programs of each group are described

    Report of the Mixed Waste Landfill Phase 2 RCRA Facility Investigation Sandia National Laboratories, Albuquerque, New Mexico

    Full text link
    corecore