8,806 research outputs found

    Automatic tuning of continuous-time filters

    Get PDF
    Integrated high-Q continuous-time filters require adaptive tuning circuits that will correct the filter parameters such as center frequency and quality factor (Q). Three different automatic tuning techniques are introduced. In all of the proposed methods, frequencyand quality factor tuning loops are controlled digitally, providing stable tuning by activating only one loop at a given time. In addition, a direct relationship between passband gain and quality factor is not required, so the techniques can be applied to active LC filters as well as Gm-C filters. The digital-tuning method based on phase comparison was veriïŹed with 1% tuning accuracy at 5.5 MHz for Q of 20. It uses phase information for both Q and center-frequency tuning. The ïŹlter output phase is tuned to the known references, which are generated by a frequency synthesizer. The core tuning circuit consists of D ïŹ‚ip-ïŹ‚ops (DFF) and simple logic gates. DFFs are utilized to perform binary phase comparisons. The second method, high-order digital tuning based on phase comparison, is an extension of the previous technique to high-order analog filters without depending on the master-slave approach. Direct tuning of the overall filter response is achieved without separating individual biquad sections, eliminating switches and their parasitics. The tuning system was veriïŹed with a prototype 6th order bandpass ïŹlter at 19 MHz with 0.6 MHz bandwidth, which was fabricated in a conventional 0.5 [mu]m CMOS technology. Analysis of different practical limitations is also provided. Finally, the digital-tuning method based on magnitude comparison is proposed for second-order filters for higher frequency operations. It incorporates a frequency synthesizer to generate reference signals, an envelope detector and a switched comparator to compare output magnitudes at three reference frequencies. The theoretical analysis of the technique and the simulation results are provided

    Oscillation-based DFT for Second-order Bandpass OTA-C Filters

    Get PDF
    This document is the Accepted Manuscript version. Under embargo until 6 September 2018. The final publication is available at Springer via https://doi.org/10.1007/s00034-017-0648-9.This paper describes a design for testability technique for second-order bandpass operational transconductance amplifier and capacitor filters using an oscillation-based test topology. The oscillation-based test structure is a vectorless output test strategy easily extendable to built-in self-test. The proposed methodology converts filter under test into a quadrature oscillator using very simple techniques and measures the output frequency. Using feedback loops with nonlinear block, the filter-to-oscillator conversion techniques easily convert the bandpass OTA-C filter into an oscillator. With a minimum number of extra components, the proposed scheme requires a negligible area overhead. The validity of the proposed method has been verified using comparison between faulty and fault-free simulation results of Tow-Thomas and KHN OTA-C filters. Simulation results in 0.25ÎŒm CMOS technology show that the proposed oscillation-based test strategy for OTA-C filters is suitable for catastrophic and parametric faults testing and also effective in detecting single and multiple faults with high fault coverage.Peer reviewedFinal Accepted Versio

    Photonic RF and microwave reconfigurable filters and true time delays based on an integrated optical Kerr frequency comb source

    Full text link
    We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwaveComment: 15 pages, 11 Figures, 60 Reference

    High Performance, Continuously Tunable Microwave Filters using MEMS Devices with Very Large, Controlled, Out-of-Plane Actuation

    Full text link
    Software defined radios (SDR) in the microwave X and K bands offer the promise of low cost, programmable operation with real-time frequency agility. However, the real world in which such radios operate requires them to be able to detect nanowatt signals in the vicinity of 100 kW transmitters. This imposes the need for selective RF filters on the front end of the receiver to block the large, out of band RF signals so that the finite dynamic range of the SDR is not overwhelmed and the desired nanowatt signals can be detected and digitally processed. This is currently typically done with a number of narrow band filters that are switched in and out under program control. What is needed is a small, fast, wide tuning range, high Q, low loss filter that can continuously tune over large regions of the microwave spectrum. In this paper we show how extreme throw MEMS actuators can be used to build such filters operating up to 15 GHz and beyond. The key enabling attribute of our MEMS actuators is that they have large, controllable, out-of-plane actuation ranges of a millimeter or more. In a capacitance-post loaded cavity filter geometry, this gives sufficient precisely controllable motion to produce widely tunable devices in the 4-15 GHz regime.Comment: 12 pages 14 figures 2 table

    Accurate automatic tuning circuit for bipolar integrated filters

    Get PDF
    An accurate automatic tuning circuit for tuning the cutoff frequency and Q-factor of high-frequency bipolar filters is presented. The circuit is based on a voltage controlled quadrature oscillator (VCO). The frequency and the RMS (root mean square) amplitude of the oscillator output signal are locked to the frequency and the RMS amplitude of a reference signal, respectively. Special attention is paid to the actual Q-factor in the oscillator. Experimental results for a breadboard circuit operating from 136 to 317 kHz are presente

    A 0.18”m CMOS DDCCII for Portable LV-LP Filters

    Get PDF
    In this paper a current mode very low voltage (LV) (1V) and low power (LP) (21 ”W) differential difference second generation current conveyor (CCII) is presented. The circuit is developed by applying the current sensing technique to a fully balanced version of a differential difference amplifier (DDA) so to design a suitable LV LP integrated version of the so-called differential difference CCII (DDCCII). Post-layout results, using a 0.18”m SMIC CMOS technology, have shown good general circuit performances making the proposed circuit suitable for fully integration in battery portable systems as, for examples, fully differential Sallen-Key bandpass filter

    On the Design of Voltage-Controlled Sinusoidal Oscillators Using OTA's

    Get PDF
    A unified systematic approach to the design of voltage-controlled oscillators using only operational transconductance amplifiers (OTA's) and capacitors is discussed in this paper. Two classical oscillator models, i.e., quadrature and bandpass-based, are employed to generate several oscillator structures. They are very appropriate for silicon monolithic implementations. The resulting oscillation frequencies are proportional to the transconductance of the OTA and this makes the reported structures well-suited for building voltage controlled oscillators (VCO's). Amplitude stabilization circuits using both automatic gain control (AGC) mechanisms and limitation schemes are presented which are compatible with the transconductance amplifier capacitor oscillator (TACO). Experimental results from bipolar breadboard and CMOS IC prototypes are included showing good potential of OTA-based oscillators for high frequency VCO operation.ComisiĂłn Interministerial de Ciencia y TecnologĂ­a ME87-000

    Practical formulation of the relation between filter specifications and the requirements for integrator circuits

    Get PDF
    The design of integrated, high-frequency, continuous-time filters has made considerable progress in the past few years. As the signal frequencies increase the design of the integrator circuits used in most of these filters becomes more critical. To give direction to the circuit design, minimum specifications for the gain and phase of the integrator circuits would be helpful. A practical method for obtaining these integrator specifications from the filter specifications is developed. The method is applied to a sixth-order Chebyshev band-pass filter, and the result is verified by computer simulatio
    • 

    corecore