50,405 research outputs found

    Model based methods for locating, enhancing and recognising low resolution objects in video

    Get PDF
    Visual perception is our most important sense which enables us to detect and recognise objects even in low detail video scenes. While humans are able to perform such object detection and recognition tasks reliably, most computer vision algorithms struggle with wide angle surveillance videos that make automatic processing difficult due to low resolution and poor detail objects. Additional problems arise from varying pose and lighting conditions as well as non-cooperative subjects. All these constraints pose problems for automatic scene interpretation of surveillance video, including object detection, tracking and object recognition.Therefore, the aim of this thesis is to detect, enhance and recognise objects by incorporating a priori information and by using model based approaches. Motivated by the increasing demand for automatic methods for object detection, enhancement and recognition in video surveillance, different aspects of the video processing task are investigated with a focus on human faces. In particular, the challenge of fully automatic face pose and shape estimation by fitting a deformable 3D generic face model under varying pose and lighting conditions is tackled. Principal Component Analysis (PCA) is utilised to build an appearance model that is then used within a particle filter based approach to fit the 3D face mask to the image. This recovers face pose and person-specific shape information simultaneously. Experiments demonstrate the use in different resolution and under varying pose and lighting conditions. Following that, a combined tracking and super resolution approach enhances the quality of poor detail video objects. A 3D object mask is subdivided such that every mask triangle is smaller than a pixel when projected into the image and then used for model based tracking. The mask subdivision then allows for super resolution of the object by combining several video frames. This approach achieves better results than traditional super resolution methods without the use of interpolation or deblurring.Lastly, object recognition is performed in two different ways. The first recognition method is applied to characters and used for license plate recognition. A novel character model is proposed to create different appearances which are then matched with the image of unknown characters for recognition. This allows for simultaneous character segmentation and recognition and high recognition rates are achieved for low resolution characters down to only five pixels in size. While this approach is only feasible for objects with a limited number of different appearances, like characters, the second recognition method is applicable to any object, including human faces. Therefore, a generic 3D face model is automatically fitted to an image of a human face and recognition is performed on a mask level rather than image level. This approach does not require an initial pose estimation nor the selection of feature points, the face alignment is provided implicitly by the mask fitting process

    Computational Learning for Hand Pose Estimation

    Get PDF
    Rapid advances in human–computer interaction interfaces have been promising a realistic environment for gaming and entertainment in the last few years. However, the use of traditional input devices such as trackballs, keyboards, or joysticks has been a bottleneck for natural interactions between a human and computer as two points of freedom of these devices cannot suitably emulate the interactions in a three-dimensional space. Consequently, a comprehensive hand tracking technology is expected as a smart and intuitive option to these input tools to enhance virtual and augmented reality experiences. In addition, the recent emergence of low-cost depth sensing cameras has led to their broad use of RGB-D data in computer vision, raising expectations of a full 3D interpretation of hand movements for human–computer interaction interfaces. Although the use of hand gestures or hand postures has become essential for a wide range of applications in computer games and augmented/virtual reality, 3D hand pose estimation is still an open and challenging problem because of the following reasons: (i) the hand pose exists in a high-dimensional space because each finger and the palm is associated with several degrees of freedom, (ii) the fingers exhibit self-similarity and often occlude to each other, (iii) global 3D rotations make pose estimation more difficult, and (iv) hands only exist in few pixels in images and the noise in acquired data coupled with fast finger movement confounds continuous hand tracking. The success of hand tracking would naturally depend on synthesizing our knowledge of the hand (i.e., geometric shape, constraints on pose configurations) and latent features about hand poses from the RGB-D data stream (i.e., region of interest, key feature points like finger tips and joints, and temporal continuity). In this thesis, we propose novel methods to leverage the paradigm of analysis by synthesis and create a prediction model using a population of realistic 3D hand poses. The overall goal of this work is to design a concrete framework so the computers can learn and understand about perceptual attributes of human hands (i.e., self-occlusions or self-similarities of the fingers) and to develop a pragmatic solution to the real-time hand pose estimation problem implementable on a standard computer. This thesis can be broadly divided into four parts: learning hand (i) from recommendiations of similar hand poses, (ii) from low-dimensional visual representations, (iii) by hallucinating geometric representations, and (iv) from a manipulating object. Each research work covers our algorithmic contributions to solve the 3D hand pose estimation problem. Additionally, the research work in the appendix proposes a pragmatic technique for applying our ideas to mobile devices with low computational power. Following a given structure, we first overview the most relevant works on depth sensor-based 3D hand pose estimation in the literature both with and without manipulating an object. Two different approaches prevalent for categorizing hand pose estimation, model-based methods and appearance-based methods, are discussed in detail. In this chapter, we also introduce some works relevant to deep learning and trials to achieve efficient compression of the network structure. Next, we describe a synthetic 3D hand model and its motion constraints for simulating realistic human hand movements. The section for the primary research work starts in the following chapter. We discuss our attempts to produce a better estimation model for 3D hand pose estimation by learning hand articulations from recommendations of similar poses. Specifically, the unknown pose parameters for input depth data are estimated by collaboratively learning the known parameters of all neighborhood poses. Subsequently, we discuss deep-learned, discriminative, and low-dimensional features and a hierarchical solution of the stated problem based on the matrix completion framework. This work is further extended by incorporating a function of geometric properties on the surface of the hand described by heat diffusion, which is robust to capture both the local geometry of the hand and global structural representations. The problem of the hands interactions with a physical object is also considered in the following chapter. The main insight is that the interacting object can be a source of constraint on hand poses. In this view, we employ pose dependency on the shape of the object to learn the discriminative features of the hand–object interaction, rather than losing hand information caused by partial or full object occlusions. Subsequently, we present a compressive learning technique in the appendix. Our approach is flexible, enabling us to add more layers and go deeper in the deep learning architecture while keeping the number of parameters the same. Finally, we conclude this thesis work by summarizing the presented approaches for hand pose estimation and then propose future directions to further achieve performance improvements through (i) realistically rendered synthetic hand images, (ii) incorporating RGB images as an input, (iii) hand perseonalization, (iv) use of unstructured point cloud, and (v) embedding sensing techniques

    Capturing Hands in Action using Discriminative Salient Points and Physics Simulation

    Full text link
    Hand motion capture is a popular research field, recently gaining more attention due to the ubiquity of RGB-D sensors. However, even most recent approaches focus on the case of a single isolated hand. In this work, we focus on hands that interact with other hands or objects and present a framework that successfully captures motion in such interaction scenarios for both rigid and articulated objects. Our framework combines a generative model with discriminatively trained salient points to achieve a low tracking error and with collision detection and physics simulation to achieve physically plausible estimates even in case of occlusions and missing visual data. Since all components are unified in a single objective function which is almost everywhere differentiable, it can be optimized with standard optimization techniques. Our approach works for monocular RGB-D sequences as well as setups with multiple synchronized RGB cameras. For a qualitative and quantitative evaluation, we captured 29 sequences with a large variety of interactions and up to 150 degrees of freedom.Comment: Accepted for publication by the International Journal of Computer Vision (IJCV) on 16.02.2016 (submitted on 17.10.14). A combination into a single framework of an ECCV'12 multicamera-RGB and a monocular-RGBD GCPR'14 hand tracking paper with several extensions, additional experiments and detail
    • …
    corecore